- #1
erm151
- 3
- 0
Homework Statement
A small wooden block with mass 0.800 kg is suspended from the lower end of a light cord that is 1.60 m long. The block is initially at rest. A bullet with mass 0.0132 kg is fired at the block with a horizontal velocity v-_i. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.800 m , the tension in the cord is 4.92 N . What is the v_i of the bullet?
Homework Equations
Tension=mg+ma
a=mv^2/r
(m_1)(v_1)=(m_1+m_2)v_2
The Attempt at a Solution
First I input the centripetal acceleration equation into the tension equation so T=mg+m(((m_1+m_2)(v_2)^2)/r) then plugged in the numbers given in the equation so the formula began to look like 4.92N=(0.8132)(-9.8)+0.8132((0.8132(v_2)^2)/1.6) and when I solved for v_2 I got approximately 5.584. Then I used the 5.584 in the conservation of motion equation so v_1=(0.8132*5.584)/0.0132. That gives me 344m/s for velocity of the bullet but mastering physics says that wrong.