Permutation problem: Seven friends queue up for a buffet....

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
solve the problem below;
Relevant Equations
permutation and combination
1614052420899.png
 
Last edited by a moderator:
Physics news on Phys.org
for the first part, not difficult,
we have ##7!=5040##
now for the second part, i get a bit confused here ok, i merged the last two fellows and now i have 6 items...
therefore i will have ##6C4 ##× the remaining ##3## can be arranged in 1 way only= ##15## is this the correct approach?...not one of my favorite topics o0)...

or can i say that, the car can be filled up in this way,
##5C2 ×1## way only(remaining 3 people), assuming that the two fellows board the 4-vehicle capacity or
##5C4 ×1 ##way only(2 fellows plus 1 person) , assuming that the two fellows board the vehicle holding 3 occupants...which gives
##10+5=15##
 
Last edited:
I agree with your solution.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top