Undergrad Permutations written as product of 2-cycles

Click For Summary
The discussion revolves around the representation of permutations as products of 2-cycles in group theory, specifically using examples from Gallian's book. The author demonstrates that while one can express the permutation (12345) in various ways, such as (15)(14)(13)(12) and (54)(52)(21)(25)(23)(13), these decompositions are not unique. Participants express confusion over how the author derived the complex representation of (12345) and question whether it was simply a trial-and-error process. The concept of conjugation is mentioned as a potential method for obtaining different representations, although some participants admit to not fully understanding it yet. The discussion highlights the complexity and non-uniqueness of permutations expressed as products of 2-cycles.
Kaguro
Messages
221
Reaction score
57
TL;DR
The decomposition of an n-cycle into 2-cycles can be done in various ways. I don't understand how to think of other ways.
I'm trying to learn Group Theory from Gallian's book. When I reached the chapter for permutation groups, the author gives an example that we can write (12345) as (15)(14)(13)(12). I immediately recognized that this should always work (I proved it later.)

Then author says we can write :
(12345) = (54)(52)(21)(25)(23)(13)

I checked, yes this works. But how did the author get such a horrific looking way to write the permutation? I don't see any pattern here.
 
Physics news on Phys.org
There is no pattern. It is only meant to demonstrate that such a decomposition isn't unique. E.g. ##(52)(21)(25)=(15)##. Only the sign (odd/even) is an invariant.
 
  • Like
Likes nuuskur and Kaguro
:oops:😐😶
No pattern?

Well, I can see why (52)(21)(25) = (15)
But I can't see why (15) = (52)(21)(25)

I mean, did the author just try a lot of products of six 2-cycles and ended up with one which simplifies to (12345) ?
 
Last edited:
Kaguro said:
:oops:😐😶
No pattern?

Well, I can see why (52)(21)(25) = (15)
But I can't see why (15) = (52)(21)(25)

I mean, did the author just try a lot of products of six 2-cycles and ended up with one which simplifies to (12345) ?
I guess he took a representation with 4 transpositions and simply conjugated one of them.
 
fresh_42 said:
I guess he took a representation with 4 transpositions and simply conjugated one of them.
Uhhh...
I have no idea about conjugation yet.
I'll read this again in a few days.

Thanks.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 26 ·
Replies
26
Views
773
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
9K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K