Perpendicular inelastic collision problem

AI Thread Summary
The discussion centers on understanding the derivation of results in a perpendicular inelastic collision problem, specifically where the variable "v" is applied and subsequently disappears in the equations. Participants note that the textbook skips intermediate algebraic steps, which leads to confusion about how "v" is calculated and used in the final equations. The process involves solving a system of equations to find "v" as a function of the masses and initial velocities of the colliding objects. Additionally, a general formula for energy loss in one-dimensional inelastic collisions is mentioned, highlighting the role of reduced mass and relative velocity. Clarifying these steps is essential for grasping the underlying physics of the collision problem.
NODARman
Messages
57
Reaction score
13
Homework Statement
Where did "v" go?
Relevant Equations
.
I still don't get it where did "v" go.
I'm trying to solve the problem that is on the second image.
1658833952271.png


Second image.
1658834059120.png
 
Physics news on Phys.org
Yes well your book doesn't show all the in between steps on how exactly it derives that result. It just states "Sparing the reader the algebra".

What is done in the in between steps (which you should try to work out by yourself, I ll just outline the steps) is that the system of equations 4.5.18 (two equations with two unknowns, the common velocity and the angle) is solved and then once you solve it and find ##v## (##v## will be a function of ##m_1,m_2, v_1,v_2##) then ##v## it is replaced in equation 4.5.19 and then after some algebra you end up with equation 4.5.20.
 
NODARman said:
Homework Statement:: Where did "v" go?
Relevant Equations:: .

I still don't get it where did "v" go.
I'm trying to solve the problem that is on the second image.
View attachment 304812

Second image.
View attachment 304813
There's a general result (which can be derived) for energy loss in a 1 dimensional inelastic (collide and coalesce) collision: $$\Delta E= \frac{1}{2} \mu \Delta v^2$$ where ##\mu## is the reduced mass of the colliding objects and ##\Delta v## their relative velocity: $$\mu = \frac{m_1m_2}{m_1+m_2}$$It looks like there's nothing different here except that ##\Delta v## is replaced by the vector difference of the two velocities.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top