A Perturbative Renormalization in Phi 4 Theory

Diracobama2181
Messages
70
Reaction score
3
TL;DR Summary
I seem to have a misunderstanding as to how counterterms actually get rid of the divergences in amplitudes.
For example, after the Lagrangian is renormalized at 1-loop order, it is of the form
$$\mathcal{L}=\frac{1}{2}\partial^{\mu}\Phi\partial_{\mu}\Phi-\frac{1}{2}m^2\Phi^2-\frac{\lambda\Phi^4}{4!}-\frac{1}{2}\delta_m^2\Phi^2-\frac{\delta_{\lambda}\Phi^4}{4!}$$.

So if I were to attempt to find the amplitude of $$\bra{p'}(\Phi(x_1)\Phi(x_2))\ket{p}$$ to order $\lambda$, I would get

$$\bra{p'}\Phi(x_1)\Phi(x_2)\ket{p}=\bra{\Omega}a_{p'}\Phi(x)\Phi(x) a_{p}^{\dagger}e^{i\int d^4y (\lambda+\delta_{\lambda})}\ket{\Omega}\\=(e^{i(p'\cdot x_1-p\cdot x_2)}+e^{i(p'\cdot x_2-p\cdot x_1)}-i(\lambda+\delta_{\lambda})\int e^{i(p'-p)\cdot x}\int\frac{d^4k}{(2\pi)^4}\frac{ie^{-ik\cdot (x_1-x)}}{k^2-m^2+i\epsilon}\int\frac{d^4q}{(2\pi)^4}\frac{ie^{-iq \cdot (x_2-x)}}{q^2-m^2+i\epsilon}d^4x)$$
From here, I would dimensionally regularize
and use $$\delta_{\lambda}=\frac{3\lambda^2}{32\pi^2}(\frac{2}{\epsilon}-\gamma+\log{4\pi})$$, which is at order $\lamba^2$, so it dosent cancel out the divergence of this integral. What is it about renormalization that I'm misunderstanding?
 
Physics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top