A Perturbative Renormalization in Phi 4 Theory

Click For Summary
The discussion focuses on the perturbative renormalization of the Phi 4 theory, specifically examining the renormalized Lagrangian at 1-loop order. The amplitude calculation for the two-point function involves integrating over momenta and includes counter-terms that are expected to address divergences. A key point raised is the confusion regarding the order of the counter-term, which should be linear in lambda, while the derived counter-term appears to be quadratic. This discrepancy suggests a misunderstanding in the renormalization process, particularly in handling divergences and counter-terms. The thread highlights the complexities of renormalization in quantum field theory, emphasizing the need for careful dimensional regularization.
Diracobama2181
Messages
70
Reaction score
3
TL;DR
I seem to have a misunderstanding as to how counterterms actually get rid of the divergences in amplitudes.
For example, after the Lagrangian is renormalized at 1-loop order, it is of the form
$$\mathcal{L}=\frac{1}{2}\partial^{\mu}\Phi\partial_{\mu}\Phi-\frac{1}{2}m^2\Phi^2-\frac{\lambda\Phi^4}{4!}-\frac{1}{2}\delta_m^2\Phi^2-\frac{\delta_{\lambda}\Phi^4}{4!}$$.

So if I were to attempt to find the amplitude of $$\bra{p'}(\Phi(x_1)\Phi(x_2))\ket{p}$$ to order $\lambda$, I would get

$$\bra{p'}\Phi(x_1)\Phi(x_2)\ket{p}=\bra{\Omega}a_{p'}\Phi(x)\Phi(x) a_{p}^{\dagger}e^{i\int d^4y (\lambda+\delta_{\lambda})}\ket{\Omega}\\=(e^{i(p'\cdot x_1-p\cdot x_2)}+e^{i(p'\cdot x_2-p\cdot x_1)}-i(\lambda+\delta_{\lambda})\int e^{i(p'-p)\cdot x}\int\frac{d^4k}{(2\pi)^4}\frac{ie^{-ik\cdot (x_1-x)}}{k^2-m^2+i\epsilon}\int\frac{d^4q}{(2\pi)^4}\frac{ie^{-iq \cdot (x_2-x)}}{q^2-m^2+i\epsilon}d^4x)$$
From here, I would dimensionally regularize
and use $$\delta_{\lambda}=\frac{3\lambda^2}{32\pi^2}(\frac{2}{\epsilon}-\gamma+\log{4\pi})$$, which is at order $\lamba^2$, so it dosent cancel out the divergence of this integral. What is it about renormalization that I'm misunderstanding?
 
Physics news on Phys.org
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
862
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
3
Views
1K