silverwhale
- 78
- 2
Hello Everybody,
I am trying to get the second line of 2.54 from the last line; I want to get:
\int \frac{d^3p}{{2 \pi}^3} \{ \frac{1}{2 E_\vec{p}} e^{-ip \cdot (x-y) }|_{p^0 = E_\vec{p}} + \frac{1}{-2 E_\vec{p}} e^{-ip \cdot (x-y) }|_{p^0 = -E_\vec{p}} \},
from
\int \frac{d^3p}{{2 \pi}^3} \int \frac{dp^0}{2 \pi i} \frac{-1}{p^2 - m^2}e^{-ip \cdot (x-y) }.
Now, my question is: why are the residues of the integrand of the p^0 integral at the two poles ±E_p given by:
Res_{p^0=E_\vec{p}} \{ \frac{-1}{(p^0)^2 - (E_\vec{p})^2}e^{-ip^0 \cdot (x_0-y_0) } \}= \frac{1}{2 E_\vec{p}} e^{-i E_\vec{p} \cdot (x^0-y^0) }, and
Res_{p^0=-E_\vec{p}} \{ \frac{-1}{(p^0)^2 - (E_\vec{p})^2}e^{-ip^0 \cdot (x_0-y_0) } \}= \frac{1}{-2 E_\vec{p}} e^{i E_\vec{p} \cdot (x^0-y^0) }.
Please help!
And thanks in advance!
I am trying to get the second line of 2.54 from the last line; I want to get:
\int \frac{d^3p}{{2 \pi}^3} \{ \frac{1}{2 E_\vec{p}} e^{-ip \cdot (x-y) }|_{p^0 = E_\vec{p}} + \frac{1}{-2 E_\vec{p}} e^{-ip \cdot (x-y) }|_{p^0 = -E_\vec{p}} \},
from
\int \frac{d^3p}{{2 \pi}^3} \int \frac{dp^0}{2 \pi i} \frac{-1}{p^2 - m^2}e^{-ip \cdot (x-y) }.
Now, my question is: why are the residues of the integrand of the p^0 integral at the two poles ±E_p given by:
Res_{p^0=E_\vec{p}} \{ \frac{-1}{(p^0)^2 - (E_\vec{p})^2}e^{-ip^0 \cdot (x_0-y_0) } \}= \frac{1}{2 E_\vec{p}} e^{-i E_\vec{p} \cdot (x^0-y^0) }, and
Res_{p^0=-E_\vec{p}} \{ \frac{-1}{(p^0)^2 - (E_\vec{p})^2}e^{-ip^0 \cdot (x_0-y_0) } \}= \frac{1}{-2 E_\vec{p}} e^{i E_\vec{p} \cdot (x^0-y^0) }.
Please help!
And thanks in advance!