A Photon speed for an observer at the photon sphere

  • A
  • Thread starter Thread starter alexriemann
  • Start date Start date
  • Tags Tags
    Orbital period
alexriemann
Messages
3
Reaction score
0
TL;DR Summary
Photon speed for an observer at the photon sphere
I am asked to compute the orbital period of a photon, in the Scwarzschild spacetime, at the photon sphere for an observer at the same radius, ##r^\star=3M##. I have computed the result, ##\Delta T=6\pi M## where ##c=G=1## ,comparing with the proper time of an observer at infinity. However, as the result gives directly ##\Delta T=2\pi r^\star##, I wonder if I can skip making the calculation by inferring that, for the observer sitting at the photon sphere, the speed of the photon is exactly ##c=1##. If that is the case, how can I argue that this is true?
 
Physics news on Phys.org
Please show your computation.

Note that you cannot have a time coordinate difference of ##\Delta T = 6\pi M## at the same time as you are saying that a local hovering observer at ##r^\star## observes light to pass by at ##c = 1## as the hovering observer is gravitationally time dilated relative to the observer at infinity.
 
##\Delta T## is not the coordinate time difference, it is the orbital period of the photon for the observer sitting at the photon sphere. Actually, for the observer at infinity, the orbital period of the photon would be ##6\sqrt3\pi M##. Maybe ny notation wasn't clear.

My guess is that I can argue that locally the speed of light is always c, and for the observer at the same radius as of the photon, this remains true because the photon radius coordinate remains the same throughout its motion.
 
alexriemann said:
ΔT is not the coordinate time difference
I’m not sure how else to read this:
alexriemann said:
comparing with the proper time of an observer at infinity
But anyway …

Yes, the definition of the ##r## coordinate relates to the area of the sphere*. As such, a great circle on such a sphere will have circumference ##2\pi r## and it will take ##2\pi r/c## for a light singnal to go around for the local observer.

* Consequently note that ##r## does not correspond to a radial distance of any sort.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
3
Views
1K
Replies
3
Views
1K
Replies
5
Views
2K
Replies
55
Views
3K
Replies
8
Views
1K
Replies
15
Views
2K
Replies
13
Views
3K
Replies
10
Views
1K
Back
Top