MHB Planes 1 & 2 Intersect: Find Scalar Equations

  • Thread starter Thread starter jessicajx22
  • Start date Start date
  • Tags Tags
    Planes Scalar
AI Thread Summary
The discussion focuses on finding the scalar equations for two intersecting planes given their symmetric equation and specific points contained within each plane. The symmetric equation for the intersection line is (x-1)/2 = (y-2)/3 = (z+4)/1, with plane 1 containing point A(2,1,1) and plane 2 containing point B(1,2,-1). To derive the scalar equations, participants suggest identifying additional points on the intersection line using the symmetric equation. The conversation emphasizes the need to understand how to formulate a scalar equation of a plane based on three points. The thread seeks assistance in applying these concepts to solve the problem effectively.
jessicajx22
Messages
1
Reaction score
0
Two planes, plane 1 and plane 2, intersect in the line with symmetric equation (x-1)/2 = (y-2)/3 = (z+4)/1. Plane 1 contains the point A(2,1,1) and plane 2 contains the point B(1,2,-1). Find the scalar equations of planes plane 1 and plane 2.

I have no idea how to do it, all help will be appreciated.
 
Mathematics news on Phys.org
jessicajx22 said:
Two planes, plane 1 and plane 2, intersect in the line with symmetric equation (x-1)/2 = (y-2)/3 = (z+4)/1. Plane 1 contains the point A(2,1,1) and plane 2 contains the point B(1,2,-1). Find the scalar equations of planes plane 1 and plane 2.

I have no idea how to do it, all help will be appreciated.

Hi Jessica, welcome to MHB!

A plane can be determined by 3 points that are in the plane.
So let's see if we can find 3 such points.

Obviously plane 1 contains point A(2,1,1).
So we need to use (x-1)/2 = (y-2)/3 = (z+4)/1 to find 2 more points.
Suppose each of them is 0. Then we must have x=1, y=2, z=-4. That is because for instance (1-1)/2=0.
Alternatively, if each of them is 1, then we must have x=3, y=5, z=-3, don't we?

Now we have 3 points in plane 1.
Do you already know what a scalar equation of a plane is?
And perhaps how to find it based on 3 points?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top