MHB Planes 1 & 2 Intersect: Find Scalar Equations

  • Thread starter Thread starter jessicajx22
  • Start date Start date
  • Tags Tags
    Planes Scalar
AI Thread Summary
The discussion focuses on finding the scalar equations for two intersecting planes given their symmetric equation and specific points contained within each plane. The symmetric equation for the intersection line is (x-1)/2 = (y-2)/3 = (z+4)/1, with plane 1 containing point A(2,1,1) and plane 2 containing point B(1,2,-1). To derive the scalar equations, participants suggest identifying additional points on the intersection line using the symmetric equation. The conversation emphasizes the need to understand how to formulate a scalar equation of a plane based on three points. The thread seeks assistance in applying these concepts to solve the problem effectively.
jessicajx22
Messages
1
Reaction score
0
Two planes, plane 1 and plane 2, intersect in the line with symmetric equation (x-1)/2 = (y-2)/3 = (z+4)/1. Plane 1 contains the point A(2,1,1) and plane 2 contains the point B(1,2,-1). Find the scalar equations of planes plane 1 and plane 2.

I have no idea how to do it, all help will be appreciated.
 
Mathematics news on Phys.org
jessicajx22 said:
Two planes, plane 1 and plane 2, intersect in the line with symmetric equation (x-1)/2 = (y-2)/3 = (z+4)/1. Plane 1 contains the point A(2,1,1) and plane 2 contains the point B(1,2,-1). Find the scalar equations of planes plane 1 and plane 2.

I have no idea how to do it, all help will be appreciated.

Hi Jessica, welcome to MHB!

A plane can be determined by 3 points that are in the plane.
So let's see if we can find 3 such points.

Obviously plane 1 contains point A(2,1,1).
So we need to use (x-1)/2 = (y-2)/3 = (z+4)/1 to find 2 more points.
Suppose each of them is 0. Then we must have x=1, y=2, z=-4. That is because for instance (1-1)/2=0.
Alternatively, if each of them is 1, then we must have x=3, y=5, z=-3, don't we?

Now we have 3 points in plane 1.
Do you already know what a scalar equation of a plane is?
And perhaps how to find it based on 3 points?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top