MHB Please check Residue theorem excercise

  • Thread starter Thread starter ognik
  • Start date Start date
  • Tags Tags
    Residue Theorem
Click For Summary
The discussion revolves around using the residue theorem to evaluate the integral of a complex function. The user identifies the poles of the function and initially misplaces one of them, leading to confusion in calculating the residues. After corrections, they compute the residues at the correct poles and attempt to apply the residue theorem. Despite reaching a formula, they find a discrepancy in the expected result, prompting further inquiries about their calculations and understanding of the residues. The conversation highlights the importance of accurately identifying poles and calculating residues in complex analysis.
ognik
Messages
626
Reaction score
2
Show $ \int_{-\infty}^{\infty}\frac{1}{x^4 - 2 cos 2 \theta + 1} \,dx = \frac{\pi}{2sin \theta} $

I know I want to use the residue theorem for $ \int_{0}^{\pi}\frac{1}{z^4 - 2 cos 2 \theta z^2 + 1} \,dz $, and have found the 4 poles ($ \pm e^{\pm i \theta } $).

I chose the upper semi-circle (closed path), |z|=R, which leaves only 2 poles interior, $ \pm e^{i \theta} $

I can show that the 'return path' integral around the semi-circle tends to 0 as R tends to $\infty$, so I can use the residue theorem for the path along the real axis. All good to here I think?

Using $ Res[f, {z}_{0}] = \lim_{{z}\to{{z}_{0}}} \frac{(z-{z}_{0})}{ (z+e^{i \theta})(z-e^{i \theta})(z+e^{-i \theta})(z-e^{-i \theta}) } $ I get
$ Res[f, e^{i \theta}] = \frac{1}{4i e^{i \theta}} \frac{1}{sin(2\theta)}$ and $ Res[f, -e^{i \theta}] = \frac{-1}{4i e^{i \theta}} \frac{1}{sin(2\theta)}$, but those residues cancel, so something is wrong (I was kinda hoping they would add). I've checked and re-checked, getting nowhere...

Could someone please just:
1) Confirm if my approach is OK
2) Check my 2 residues

That should be enough for me to finish this tomorrow (Sleepy) ...
 
Physics news on Phys.org
ognik said:
Show $ \int_{-\infty}^{\infty}\frac{1}{x^4 - 2 cos 2 \theta + 1} \,dx = \frac{\pi}{2sin \theta} $

I know I want to use the residue theorem for $ \int_{0}^{\pi}\frac{1}{z^4 - 2 cos 2 \theta z^2 + 1} \,dz $, and have found the 4 poles ($ \pm e^{\pm i \theta } $).

I chose the upper semi-circle (closed path), |z|=R, which leaves only 2 poles interior, $\pm e^{i \theta} $
No. The two poles inside the contour are $e^{i\theta}$ and $-e^{-i\theta}$ (on the assumption that $0<\theta<\pi$).
 
Thanks, but that tells me I have learned something wrong. Yes, $ 0 < \theta < \pi $

$ e^{i \theta} $ is in quadrant 1, but I thought $ -e^{-i \theta} $ would be in quad 3, because $ -e^{-i \theta} = -(cos(-i \theta) +i sin(-i \theta)) = -cos(i \theta) - i sin(i \theta) $, so both real and imaginary components are negative, therefore quad 3?

I know I must have this wrong, but why? How should I have 'plotted' these poles?
 
ognik said:
Thanks, but that tells me I have learned something wrong. Yes, $ 0 < \theta < \pi $

$ e^{i \theta} $ is in quadrant 1, but I thought $ -e^{-i \theta} $ would be in quad 3, because ${\color{red} -e^{-i \theta} = -(cos(-i \theta) +i sin(-i \theta))} = -cos(i \theta) - i sin(i \theta) $, so both real and imaginary components are negative, therefore quad 3?

I know I must have this wrong, but why? How should I have 'plotted' these poles?
Too many $i$'s there, for a start. It should be $-e^{-i \theta} = -(\cos(-\theta) +i \sin(- \theta)) = -\cos(\theta) + i \sin(\theta) $, because $\cos(-\theta) = \cos(\theta)$ and $\sin(-\theta) = -\sin(\theta)$.
 
Oops, 'i' feel rather embarrassed ...Thanks Opalg.

Then $ Res[f,e^{i \theta }] = \frac{1}{2e^{i \theta }(e^{i \theta } +e^{-i \theta }) (e^{i \theta } - e^{-i \theta }) }
= \frac{1}{4ie^{i \theta }} \frac{1}{2sin \theta cos \theta} $

Similarly, $ Res[f,-e^{-i \theta }] = \frac{1}{4ie^{-i \theta }} \frac{1}{2sin \theta cos \theta} $

Finally $ \int_{-\infty}^{\infty} f(x)\,dx = 2 \pi i (\frac{1}{4i e^{i \theta + }}\frac{1}{4i e^{-i \theta}})\frac{1}{2sin \theta cos \theta}
=\frac{\pi}{8cos \theta}\frac{1}{2sin \theta cos \theta} $ - which is $ \frac{1}{8cos^2 \theta} $ different from what it should be? I can't find a mistake?
 
Last edited:
ognik said:
Finally $ \int_{-\infty}^{\infty} f(x)\,dx = 2 \pi i \Bigl(\frac{1}{4i e^{i \theta }} + \frac{1}{4i e^{-i \theta}}\Bigr)\frac{1}{2sin \theta cos \theta}
=\frac{\pi}{8cos \theta}\frac{1}{2sin \theta cos \theta} $ - which is $ \frac{1}{8cos^2 \theta} $ different from what it should be? I can't find a mistake?
$\dfrac{1}{4i e^{i \theta }} + \dfrac{1}{4i e^{-i \theta}} = \dfrac1{4i}\cdot \dfrac{e^{-i\theta} + e^{i\theta}}{e^{i\theta} e^{-i\theta}} = \dfrac1{4i}\cdot \dfrac{2\cos\theta}1 = \dfrac{\cos\theta}{2i}$
 
Last edited:
Thanks Opalg, happy that I was on the right track - but how do you persuade $ e^{\theta} e^{i\theta} $ to = 1? I haven't come across that before, tried whatever I could think of and couldn't find anything on the web ...
 
ognik said:
- but how do you persuade $ e^{\theta} e^{i\theta} $ to = 1? I haven't come across that before, tried whatever I could think of and couldn't find anything on the web ...
Just a typo, $ e^{-i\theta} e^{i\theta}=e^0=1. $
 
I should have seen that, but thanks Fernando. (times like this I get quite annoyed with myself!)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K