MHB Please give me an idea for Reduction of order

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Idea Reduction
Another1
Messages
39
Reaction score
0
phpkJkbpx.png
 
Physics news on Phys.org
What have you tried? If y= uv then what is y'? What is y''? What do you get when you put those into the differential equation? And then use the fact that u itself satisfies the equation, that u''+ V(x)u= 0.
 
Country Boy said:
What have you tried? If y= uv then what is y'? What is y''? What do you get when you put those into the differential equation? And then use the fact that u itself satisfies the equation, that u''+ V(x)u= 0.
y'' = uv'' +2u'v'+ u''v

so

y''+ Vy = uv'' +2u'v'+ u''v + Vuv = 0
 
Another said:
y'' = uv'' +2u'v'+ u''v

so

y''+ Vy = uv'' +2u'v'+ u''v + Vuv = 0
Okay, and since u satisfies u''+ Vu= 0, that is
uv''+ 2u'v'+ v(u''+ Vu)= uv''+ 2u'v'= 0.

uv''= -2u'v'.

Let p= v'. Then up'= -2u'p so that p'/p= -2u'/u.
The order of the equation has been "reduced" from 2 to 1.

Integrating both sides ln(p)= -2ln(u)+ c= ln(u^{-2})+ c.

Taking the exponential of both sides, p= v'= Cu^{-2},
$v(x)=\int^x \frac{d\chi}{\chi^2}$
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top