Please help me understand a definition of a covariance function

Click For Summary
SUMMARY

The discussion revolves around the definition and properties of covariance functions in stochastic processes, specifically in the context of strongly and weakly stationary processes. The covariance function is defined as ##B(s,t) = \mathbb{E}[X_sX_t] - \mathbb{E}[X_s]\mathbb{E}[X_t]##, and it is established that for strongly stationary processes, ##B(s,t)## is invariant under time shifts, leading to the form ##B(s,t) = f(s-t)##. The confusion arises regarding the transition from ##f(s-t)## to ##C(s-t)##, where ##C(t) = \mathbb{E}[X_{s+t}X_s]## is defined for weakly stationary processes, highlighting the broader context of covariance functions.

PREREQUISITES
  • Understanding of stochastic processes and their classifications
  • Familiarity with covariance functions in statistical analysis
  • Knowledge of the concepts of strong and weak stationarity
  • Basic proficiency in mathematical expectations and notation
NEXT STEPS
  • Study the properties of covariance functions in stochastic processes
  • Learn about the differences between strong and weak stationarity
  • Explore the implications of time invariance in stochastic processes
  • Investigate the relationship between covariance functions and Brownian motion
USEFUL FOR

Students and researchers in statistics, mathematics, and data science focusing on stochastic analysis, particularly those studying covariance functions and their applications in modeling random processes.

docnet
Messages
796
Reaction score
486
Homework Statement
Covariance function of a weakly stationary process.
Relevant Equations
.
On page 3 of the lecture notes for Stochastic Analysis, it says '##B(s,t)## is the covariance function ##\mathbb{E}[X_sX_t]-\mathbb{E}[X_s]\mathbb{E}[X_t]##. Then On page 5, it says the notes also say that 'the covariance function ##B(s,t)## of a strongly stationary stochastic process is invariant under time shifts so ##B(s,t)=f(s-t)## for some ##f##'. I'm wondering where did ##s-t## come from?? And I'm wondering how does it convey the information that the covariance function is invariant under time shifts, i.e., ##B(s,t)=B(s+h,t+h)##? This seemed to me like a non-sequitur, am I misunderstanding something obvious?

To top off my confusion, the next line says 'A stochastic process is weakly stationary, second-order stationary, or wide-sense stationary if ##B(s,t)=C(s-t)##' I'm wondering why call it ##C(s-t)## when it's already been called ##f(s-t)##? what information do the letters ##C## and ##f## imply here?? And then, it says ' ##C(t)=\mathbb{E}[X_{s+t}X_s]## for all ##s## is called the covariance function.' I'm wondering how ##C(t)## is related to ##C(s-t)##, and why the covariance function here has a different definition than the one provided earlier on page 3, although weakly stationary doesn't imply zero mean.

Thanks always for your help.
 
Last edited:
Physics news on Phys.org
docnet said:
Homework Statement: Covariance function of a weakly stationary process.
Relevant Equations: .

On page 3 of the lecture notes for Stochastic Analysis, it says '##B(s,t)## is the covariance function ##\mathbb{E}[X_sX_t]-\mathbb{E}[X_s]\mathbb{E}[X_t]##. Then On page 5, it says the notes also say that 'the covariance function ##B(s,t)## of a strongly stationary stochastic process is invariant under time shifts so ##B(s,t)=f(s-t)## for some ##f##'. I'm wondering where did ##s-t## come from?? And I'm wondering how does it convey the information that the covariance function is invariant under time shifts, i.e., ##B(s,t)=B(s+h,t+h)##?
Saying that ##B(s,t)## only depends on ##s-t## means that ##B(s,t) = B(s+h, t+h)## because ##(s+h)-(t+h) =s-t##.
docnet said:
This seemed to me like a non-sequitur, am I misunderstanding something obvious?

To top off my confusion, the next line says 'A stochastic process is weakly stationary, second-order stationary, or wide-sense stationary if ##B(s,t)=C(s-t)##' I'm wondering why call it ##C(s-t)## when it's already been called ##f(s-t)##?
It's just a question of how broadly they want to make the definition of "covariance function". The function ##f(s-t)## was just introduced to say that a strongly stationary ##B(s,t)## only depends on ##s-t##. ##f(s-t)## has not been defined as the covariance function for the strongly stationary process yet because they want to define the covariance function, ##C(s-t)##, in the broader context of weakly stationary processes. Once "weakly stationary" and "covariance function" are defined, it is clear that "strongly stationary" implies "weakly stationary" and that ##f(s-t)## is the covariance function ##C(s-t)##.
 
  • Informative
Likes   Reactions: docnet
docnet said:
Homework Statement: Covariance function of a weakly stationary process.
Relevant Equations: .

On page 3 of the lecture notes for Stochastic Analysis, it says '##B(s,t)## is the covariance function ##\mathbb{E}[X_sX_t]-\mathbb{E}[X_s]\mathbb{E}[X_t]##. Then On page 5, it says the notes also say that 'the covariance function ##B(s,t)## of a strongly stationary stochastic process is invariant under time shifts so ##B(s,t)=f(s-t)## for some ##f##'. I'm wondering where did ##s-t## come from?? And I'm wondering how does it convey the information that the covariance function is invariant under time shifts, i.e., ##B(s,t)=B(s+h,t+h)##? This seemed to me like a non-sequitur, am I misunderstanding something obvious?

To top off my confusion, the next line says 'A stochastic process is weakly stationary, second-order stationary, or wide-sense stationary if ##B(s,t)=C(s-t)##' I'm wondering why call it ##C(s-t)## when it's already been called ##f(s-t)##? what information do the letters ##C## and ##f## imply here?? And then, it says ' ##C(t)=\mathbb{E}[X_{s+t}X_s]## for all ##s## is called the covariance function.' I'm wondering how ##C(t)## is related to ##C(s-t)##, and why the covariance function here has a different definition than the one provided earlier on page 3, although weakly stationary doesn't imply zero mean.

Thanks always for your help.
Isn't that a property of/definition of Brownian motion? Isn't that a property of the objects you're working with?
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K