- #1

- 3

- 0

What is the potential caused by placing a point charge Q at the center of a dielectric sphere ([tex]\epsilon[/tex]

_{2}), radius R, that is embedded inside some other infinite slab of dielectric ([tex]\epsilon[/tex]

_{1})?

Here's what I've determined so far:

D(r) = Q/r

^{2}

E(r<R) = Q/[tex]\epsilon[/tex]

_{2}*r

^{2}

E(r>R) = Q/[tex]\epsilon[/tex]

_{1}*r

^{2}

So, letting P = (D-E)/4[tex]\pi[/tex] , I've found

[tex]\Phi[/tex](r<R) = Q/r + ([tex]\epsilon[/tex]

_{2}-1)*Q/(3*[tex]\epsilon[/tex]

_{2}*r)

[tex]\Phi[/tex](r>R) = Q/r + ([tex]\epsilon[/tex]

_{1}-1)*Q/(3*[tex]\epsilon[/tex]

_{1}*r)

My question is, shouldn't I have the option of allowing the potential to be continuous at the interface?? Have I left out some surface charge polarization or something?