MHB Polar equation of a conic (Carly's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Polar
Click For Summary
The polar equation r = 4 / (1 - 3 sin θ represents a hyperbola. To convert it to rectangular form, the equation is manipulated to yield x² - 8y² - 24y - 16 = 0. The conic's matrix indicates a hyperbola, as the determinant is non-zero and the discriminant is negative. Completing the square can also confirm the hyperbolic nature of the equation. The discussion provides a clear method for transforming polar equations into rectangular form for conics.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

what is the conic represented by the polar equation r= 4 / (1 - 3 sin theta)
find the rectangular equation

Here is a link to the question:

R= 4 / (1 - 3 sin theta)? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Carly, follow the steps: $$\begin{aligned}&r=\frac{4}{1-3\sin \theta}\\& r(1-3\sin \theta)=4\\& r\left(1-3\dfrac{y}{r}\right)=4\\&r-3y=4\\& r=4+3y\\&r^2=(4+3y)^2\\&x^2+y^2=9y^2+24y+16\\&x^2-8y^2-24y-16=0\quad (*) \end{aligned}$$ The matrix of the conic is $A=\begin{bmatrix}{1}&{\;\;0}&{\;\;0}\\{0}&{-8}&{-12}\\{0}&{-12}&{-16}\end{bmatrix}$ and $\Delta=\det A\ne 0$, $\delta=\begin{vmatrix}{1}&{\;\;0}\\{0}&{-8}\end{vmatrix}<0$. This means that $(*)$ is the equation of a hyperbola. Alternatively, we can complete the squares.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
983
  • · Replies 1 ·
Replies
1
Views
4K
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K