1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Polarization of Coaxial Cable with Compound Dielectric

  1. Mar 3, 2010 #1
    1. The problem statement, all variables and given/known data
    A coaxial cable of circular cross section has a compound dielectric. The inner conductor has an outside radius [itex] a [/itex], which is surrounded by a dielectric sheath of dielectric constant [itex] K_1 [/itex] and of outer radius [itex] b [/itex]. Next comes another dielectric sheath of dielectric constant [itex] K_2 [/itex] and outer radius [itex] c [/itex]. The outer conducting shell has an inner radius [itex] c [/itex]. If a potential difference [itex] \varphi_0 [/itex] is imposed between the conductors, calculate the polarization at each point in the two dielectric media.


    2. Relevant equations

    [tex] D = \epsilon_0 E + P [/tex]

    [tex] \epsilon_1 = K_1\epsilon_0
    \epsilon_2 = K_2\epsilon_0 [/tex]

    [tex] \oint D\cdot nda = Q_e [/tex]



    3. The attempt at a solution
    [tex] \oint D\cdot nda = Q_e [/tex]

    [tex] D\oint da = Q_e [/tex]

    [tex] D(2\pi rl) = Q_e [/tex]

    [tex] D = \frac{\lambda}{2r\pi}[/tex]

    The potential from a to b over the first dielectric [itex] K_1[/itex]

    [tex] \Delta\varphi_1 = D\frac{a_1}{\epsilon_1} [/tex]

    [tex] a_1 = \pi(b^2 - a^2) [/tex]

    [tex] \Delta\varphi_1 = \frac{\lambda}{r\pi}\frac{\pi(b^2 - a^2)}{\epsilon_1} [/tex]

    Lets call [itex] \Delta\varphi_1 = \varphi_1 [/itex]

    [tex] E_1 = - \nabla\varphi_1 [/tex]

    [tex] E_1 = -(\frac{\partial\varphi_1}{\partial r} + \frac{1}{r}\frac{\partial\varphi_1}{\partial\theta} + \frac{\partial\varphi_1}{\partial z} [/tex]

    [tex] E_1 = -\frac{\partial\varphi_1}{\partial r} [/tex]

    [tex] E_1 = -\frac{\partial}{\partial r} \frac{\lambda}{r}(\frac{b^2 - a^2}{\epsilon_1}) [/tex]

    [tex] E_1 = -\lambda(\frac{b^2 - a^2}{\epsilon_1}) \frac{\partial}{\partial r} \frac{1}{r} [/tex]

    [tex] E_1 = -\lambda(\frac{b^2 - a^2}{\epsilon_1}) (\frac{-1}{r^2}) [/tex]

    [tex] E_1 = \frac{\lambda}{r^2}(\frac{b^2 - a^2}{\epsilon_1}) [/tex]

    [tex] P_1 = D - \epsilon_0 E_1 [/tex]

    [tex] P_1 = \frac{\lambda}{r\pi} - \epsilon_0(\frac{\lambda}{r^2}(\frac{b^2 - a^2}{\epsilon_1})) [/tex]

    [tex] P_1 = \frac{\lambda}{r\pi} - \frac{\epsilon_0}{\epsilon_1}(\frac{\lambda}{r^2}(b^2 - a^2)) [/tex]

    [tex] P_1 = \frac{\lambda}{r\pi} - \frac{\lambda}{K_1 r^2} (b^2 - a^2) [/tex]

    [tex] P_1 = \frac{\lambda}{r} (\frac{1}{\pi} - \frac{b^2 - a^2}{K_1 r}) [/tex]

    However, this does not seem correct since [itex] \lambda [/itex] is not given in this problem. Any help would be greatly appreciated. Thanks in advance.
     
  2. jcsd
  3. Mar 4, 2010 #2
    [tex] \oint D\cdot nda = Q_e [/tex]

    [tex] D\oint da = Q_e [/tex]

    [tex] D(2\pi rl) = Q_e [/tex]

    [tex] D = \frac{\lambda}{2r\pi}[/tex]

    [tex] E_1 = \frac{D}{\epsilon_1} = \frac{\lambda}{2r\pi \epsilon_1} [/tex]

    The potential from a to b over the first dielectric

    [tex] \Delta\varphi_1 = E_1 (b - a) [/tex]

    [tex] \Delta\varphi_1 = \frac{\lambda (b-a)}{2r\pi \epsilon_1} [/tex]

    The potential from b to c over the second dielectric

    [tex] \Delta\varphi_2 = \frac{\lambda (c-b)}{2r\pi\epsilon_1} [/tex]

    [tex] \varphi_0 = \Delta\varphi_1 + \Delta\varphi_2 [/tex]

    [tex] \varphi_0 = \frac{\lambda (b-a)}{2r\pi \epsilon_1} + \frac{\lambda (c-b)}{2r\pi \epsilon_2} [/tex]

    [tex] \varphi_0 = \frac{\lambda}{2r\pi}(\frac{b-a}{\epsilon_1} + \frac{c-b}{\epsilon_2}) [/tex]

    [tex] \lambda = \frac{\varphi_0 2r\pi}{(\frac{b-a}{\epsilon_1} + \frac{c-b}{\epsilon_2})} [/tex]

    [tex] E_1 = \frac{1}{2r\pi\epsilon_1} ( \frac{\varphi_0 2r\pi}{(\frac{b-a}{\epsilon_1} + \frac{c-b}{\epsilon_2})}) [/tex]

    [tex] E_1 = \frac{1}{\epsilon_1}(\frac{\varphi_0}{(\frac{b-a}{\epsilon_1} + \frac{c-b}{\epsilon_2})}) [/tex]

    [tex] P_1 = \chi_1 E_1 [/tex]

    [tex] P_1 = (\frac{K_1 - 1}{K_1})(\frac{\varphi_0}{(\frac{b-a}{\epsilon_1} + \frac{c-b}{\epsilon_2})}) [/tex]

    Does this make sense? Any help would be greatly appreciated. Thanks in advance.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook