Polynomial Challenge: Find # of Int Roots of Degree 3 w/ Coeffs

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Polynomials
Click For Summary
SUMMARY

The discussion centers on finding the number of degree 3 polynomials with integer coefficients that satisfy the conditions P(0) = 3 and P(1) = 11, while having exactly 2 integer roots. The polynomial can be expressed in the form P(x) = a(x - r1)(x - r2)(x - r3), where r1 and r2 are the integer roots, and r3 is a non-integer root. The constraints lead to a specific set of integer values for the coefficients, ultimately revealing the count of such polynomials.

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Familiarity with integer coefficients in polynomial equations
  • Knowledge of root-finding techniques for polynomials
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore the Rational Root Theorem for polynomial equations
  • Study polynomial interpolation methods
  • Learn about Vieta's formulas and their applications in polynomial roots
  • Investigate the implications of integer coefficients on polynomial behavior
USEFUL FOR

Mathematicians, educators, and students interested in polynomial theory, particularly those focusing on integer roots and polynomial equations with specific constraints.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $P(0)=3$ and $P(1)=11$ where $P$ is a polynomial of degree 3 with integer coefficients and $P$ has only 2 integer roots, find how many such polynomials $P$ exist?
 
Mathematics news on Phys.org
beacuse P(0) is odd it does not have any even root and because P(1) is odd it does not have any odd root. So it cannot have any integer roots. So there is no polynomial.

reason : P (a) - P(b) is divisible by a - b
 
the above is based on http://mathhelpboards.com/linear-abstract-algebra-14/polynomal-divisibility-10507.html#post48739
 
Hi kaliprasad,

Thanks for participating and the follow-up explanation post! I also want to thank you for your continuous support to my challenge problems!:)
 
anemone said:
If $P(0)=3$ and $P(1)=11$ where $P$ is a polynomial of degree 3 with integer coefficients and $P$ has only 2 integer roots, find how many such polynomials $P$ exist?
for convenience we let the leading coefficient=1, then :
$P(x)=x^3+ax^2+bx+3$
$P(1)=1+a+b+3=11$
$\therefore a+b=7$-----(1)
if m,n are 2 intger roots of $ P(x)$ then m.n must be a factor of 3
if $P(-1)=0$ we have $-1+a-b+3=0, \,, =>a-b=-2---(2)$
from (1)(2)
$a=\dfrac {5}{2}$
does not fit (since a must be integer)
if $P(3)=0 $
we have $27+9a+3b+3=0, \,, =>3a+b=-10---(3)$
if $P(-3)=0$
we have $-27+9a-3b+3=0\,, =>3a-b=8----(4)$
from (1)(3) and (1)(4) we find both "a" are not integer
and we conclude such P(x) does not exist
 
Last edited:

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K