MHB Polynomial Challenge: Find # of Int Roots of Degree 3 w/ Coeffs

AI Thread Summary
The discussion revolves around finding the number of degree 3 polynomials with integer coefficients that satisfy the conditions P(0)=3, P(1)=11, and have exactly 2 integer roots. Participants analyze the implications of these conditions on the polynomial's structure and coefficients. The challenge emphasizes the relationship between the roots and the polynomial's values at specific points. The conversation highlights the mathematical reasoning required to determine the possible configurations of such polynomials. Ultimately, the goal is to establish how many distinct polynomials meet these criteria.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $P(0)=3$ and $P(1)=11$ where $P$ is a polynomial of degree 3 with integer coefficients and $P$ has only 2 integer roots, find how many such polynomials $P$ exist?
 
Mathematics news on Phys.org
beacuse P(0) is odd it does not have any even root and because P(1) is odd it does not have any odd root. So it cannot have any integer roots. So there is no polynomial.

reason : P (a) - P(b) is divisible by a - b
 
the above is based on http://mathhelpboards.com/linear-abstract-algebra-14/polynomal-divisibility-10507.html#post48739
 
Hi kaliprasad,

Thanks for participating and the follow-up explanation post! I also want to thank you for your continuous support to my challenge problems!:)
 
anemone said:
If $P(0)=3$ and $P(1)=11$ where $P$ is a polynomial of degree 3 with integer coefficients and $P$ has only 2 integer roots, find how many such polynomials $P$ exist?
for convenience we let the leading coefficient=1, then :
$P(x)=x^3+ax^2+bx+3$
$P(1)=1+a+b+3=11$
$\therefore a+b=7$-----(1)
if m,n are 2 intger roots of $ P(x)$ then m.n must be a factor of 3
if $P(-1)=0$ we have $-1+a-b+3=0, \,, =>a-b=-2---(2)$
from (1)(2)
$a=\dfrac {5}{2}$
does not fit (since a must be integer)
if $P(3)=0 $
we have $27+9a+3b+3=0, \,, =>3a+b=-10---(3)$
if $P(-3)=0$
we have $-27+9a-3b+3=0\,, =>3a-b=8----(4)$
from (1)(3) and (1)(4) we find both "a" are not integer
and we conclude such P(x) does not exist
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top