MHB Polynomial Divisibility Problem: Proof & Corollary

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Divisibility
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
problem
For any polynomial P(x) show that P(a) - P(b) is divisible by a-b
Proof:
Let $p (x) = t_nx^n + t_{n-1} x^{n-1} + \cdots + t_0$
Then
$p (a) = t_na^n + t_{n-1} a^{n-1} + \cdots + t_0$
$p (b) = t_nb^n + t_{n-1} b^{n-1} + \cdots + t_0$
So $p (a) – p(b) = t_n(a^n- b^n) +t_{n-1} (a^{n-1}-b^{n-1}) + \cdots + t_1(a-b)$
As each of the $a^k-b^k $ is divisible by a- b so p(a) – p(b) is dibvisible by a-b.
As a corollary
If p(x) has integer coefficients and P(0) and P(1) are odd it does not have any integer root.
This is so because P(even) – p(0) is even and P(odd) – p(1) is even so neither can be zero.
 
Last edited:
Physics news on Phys.org
kaliprasad said:
problem
For any polynomial P(x) show that P(a) - P(b) is divisible by a-b
Proof:
Let $p (x) = t_nx^n + t_{n-1} x^{n-1} + \cdots + t_0$
Then
$p (a) = t_na^n + t_{n-1} a^{n-1} + \cdots + t_0$
$p (b) = t_nb^n + t_{n-1} b^{n-1} + \cdots + t_0$
So $p (a) – p(b) = t_n(a^n- b^n) +t_{n-1} (a^{n-1}-b^{n-1}) + \cdots + t_1(a-b)$
As each of the $a^k-b^k $ is divisible by a- b so p(a) – p(b) is dibvisible by a-b.
As a corollary
If p(x) has integer coefficients and P(0) and P(1) are odd it does not have any integer root.
This is so because P(even) – p(0) is even and P(odd) – p(1) is even so neither can be zero.

Let $$Q_b(x)=P(x)-P(b)$$ this has a root at $$x=b$$ so there exists a polynomial $$R_b(x)$$ such that:

$$Q_b(x)=(x-b)R_b(x)$$,

and in particular:

$$Q_b(a)=P(a)-P(b)=(a-b)R_b(a)$$

.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
48
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
27
Views
2K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 28 ·
Replies
28
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K