MHB Polynomial Divisibility Problem: Proof & Corollary

  • Thread starter Thread starter kaliprasad
  • Start date Start date
  • Tags Tags
    Divisibility
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
problem
For any polynomial P(x) show that P(a) - P(b) is divisible by a-b
Proof:
Let $p (x) = t_nx^n + t_{n-1} x^{n-1} + \cdots + t_0$
Then
$p (a) = t_na^n + t_{n-1} a^{n-1} + \cdots + t_0$
$p (b) = t_nb^n + t_{n-1} b^{n-1} + \cdots + t_0$
So $p (a) – p(b) = t_n(a^n- b^n) +t_{n-1} (a^{n-1}-b^{n-1}) + \cdots + t_1(a-b)$
As each of the $a^k-b^k $ is divisible by a- b so p(a) – p(b) is dibvisible by a-b.
As a corollary
If p(x) has integer coefficients and P(0) and P(1) are odd it does not have any integer root.
This is so because P(even) – p(0) is even and P(odd) – p(1) is even so neither can be zero.
 
Last edited:
Physics news on Phys.org
kaliprasad said:
problem
For any polynomial P(x) show that P(a) - P(b) is divisible by a-b
Proof:
Let $p (x) = t_nx^n + t_{n-1} x^{n-1} + \cdots + t_0$
Then
$p (a) = t_na^n + t_{n-1} a^{n-1} + \cdots + t_0$
$p (b) = t_nb^n + t_{n-1} b^{n-1} + \cdots + t_0$
So $p (a) – p(b) = t_n(a^n- b^n) +t_{n-1} (a^{n-1}-b^{n-1}) + \cdots + t_1(a-b)$
As each of the $a^k-b^k $ is divisible by a- b so p(a) – p(b) is dibvisible by a-b.
As a corollary
If p(x) has integer coefficients and P(0) and P(1) are odd it does not have any integer root.
This is so because P(even) – p(0) is even and P(odd) – p(1) is even so neither can be zero.

Let $$Q_b(x)=P(x)-P(b)$$ this has a root at $$x=b$$ so there exists a polynomial $$R_b(x)$$ such that:

$$Q_b(x)=(x-b)R_b(x)$$,

and in particular:

$$Q_b(a)=P(a)-P(b)=(a-b)R_b(a)$$

.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top