MHB Polynomials in n indeterminates and UFDs

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Polynomials
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In the introduction to Chapter 1 of his book "Introduction to Plane Algebraic Curves", Ernst Kunz states that the polynomial ring $$K[ X_1, X_2, \ ... \ ... \ X_n]$$ over a field $$K$$ is a unique factorization domain ... ... but he does not prove this fact ...

Can someone demonstrate a proof of this proposition ... or point me to a text or online notes that contain a proof ...

Help will be appreciated ... ...

Peter
 
Physics news on Phys.org
Peter said:
In the introduction to Chapter 1 of his book "Introduction to Plane Algebraic Curves", Ernst Kunz states that the polynomial ring $$K[ X_1, X_2, \ ... \ ... \ X_n]$$ over a field $$K$$ is a unique factorization domain ... ... but he does not prove this fact ...

Can someone demonstrate a proof of this proposition ... or point me to a text or online notes that contain a proof ...

Help will be appreciated ... ...

Peter
There is a theorem that if $R$ is a UFD then so is $R[X]$. Your result then follows by induction on the number of indeterminates, because $K[ X_1, X_2, \ldots, X_n] = (K[ X_1, X_2, \ldots, X_{n-1}])[X_n]$.

There is a discussion and proof of that theorem here.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top