Position of the principal points of a telephoto lens system

AI Thread Summary
The discussion centers on determining the positions of the principal points of a telephoto lens system, with a focal length of 200mm. The original poster notes that textbooks typically place principal points within or near the lens system, while they expect both points to be located in the object space for telephoto lenses. Confusion arises when the sketch shows the rear principal point closer to the front focal point, contradicting expected distances. Suggestions include using a laser beam to measure angles for locating the principal planes accurately. The conversation emphasizes the complexity of telephoto lens systems and the need for precise measurements.
MissScience33
Messages
2
Reaction score
0
Hi everyone,
for a lab I need to determine the position of the cardinal points of a telephoto lens. The focal points were determined experimentally, and the focal length given on the lens is 200mm. The principal points should be determined with f=PF.

In all the textbooks, the principal points mostly find themselves back within the thick lens/lens system, or very close to it if it is for instance a meniscus lens. For a telephoto, both principal points should find themselves back in the object space.

But if I draw the principal points such that the focal lengths go from the focal points towards the lens, the rear principal point finds itself closer to the front focal point, and the front principal point is closer to the rear focal point. I think this is strange since the focal length should then be the shorter distance between the (in my sketch) rear, respectively front focal point and the front, respectively rear principal point.

I was wondering if due to the fact that in a telephoto, there are two lenses(in theory, in practice there are apparently more to prevent aberrations I think), with a negative and a positive focal length, in order to find the principal points, one should go in the same direction, towards the object space for both? Or maybe in opposite directions, but not towards the lens? This seems slightly weird to me if I understand the theory correctly, but maybe I missed something with the signs of the radii of curvature, or the focal lengths?

Or is there maybe a problem with the positions of the focal points?

Thanks for any input!
 
Last edited:
Science news on Phys.org
MissScience33 said:
Hi everyone,
for a lab I need to determine the position of the cardinal points of a telephoto lens. The focal points were determined experimentally, and the focal length given on the lens is 200mm. The principal points should be determined with f=PF.

In all the textbooks, the principal points mostly find themselves back within the thick lens/lens system, or very close to it if it is for instance a meniscus lens. For a telephoto, both principal points should find themselves back in the object space.

But if I draw the principal points such that the focal lengths go from the focal points towards the lens, the rear principal point finds itself closer to the front focal point, and the front principal point is closer to the rear focal point. I think this is strange since the focal length should then be the shorter distance between the (in my sketch) rear, respectively front focal point and the front, respectively rear principal point.

I was wondering if due to the fact that in a telephoto, there are two lenses(in theory, in practice there are apparently more to prevent aberrations I think), with a negative and a positive focal length, in order to find the principal points, one should go in the same direction, towards the object space for both? Or maybe in opposite directions, but not towards the lens? This seems slightly weird to me if I understand the theory correctly, but maybe I missed something with the signs of the radii of curvature, or the focal lengths?

Or is there maybe a problem with the positions of the focal points?

Thanks for any input!
I don't understand what you are trying to do- is this a ray tracing exercise, or are you trying to locate planes for an actual lens sitting on a bench?
 
Andy Resnick said:
I don't understand what you are trying to do- is this a ray tracing exercise, or are you trying to locate planes for an actual lens sitting on a bench?
I'm trying to locate the planes for a real telephoto lens.
 
MissScience33 said:
I'm trying to locate the planes for a real telephoto lens.
Hmmm... I think it's a little tricky.

Try aiming a raw laser beam parallel to the optical axis, laterally displaced by a given distance and then measure the angle the beam when it emerges from the lens. I think you can then use trig to locate the rear plane, defined where the ray emerging from the lens appears to have crossed the rear principal plane at the same distance from the axis that the ray entered the lens. Reverse the setup to locate the front principle plane.
 
Hello ! As we know by definition that: "Constructive interference occurs when the phase difference between the waves is an even multiple of π (180°), whereas destructive interference occurs when the difference is an odd multiple of π." But my question is in the case of destructive interference, what happens to the energy carried by the two electromagnetic waves that annihilate, the energy carried by the electromagnetic waves also disappears, or is transformed into some other type of...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...

Similar threads

Replies
10
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
8
Views
3K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
29
Views
3K
Back
Top