MHB Possible integer values for coefficients of cubic equation with given root

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
AI Thread Summary
The discussion centers on finding integer coefficients \( (a, b, c, d) \) for the cubic equation \( ax^3 + bx^2 + cx + d = 0 \) with the root \( x = \sqrt[3]{\sqrt{8}+4} - \sqrt[3]{\sqrt{8}-4} \). Participants explore the implications of this root and its algebraic properties. The conversation highlights the importance of integer solutions and the relationships between the coefficients. The contributors express appreciation for each other's insights and efforts in solving the problem. Overall, the focus remains on determining valid integer values for the coefficients based on the specified root.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $a,\,b,\,c$ and $d$ are all integers such that $x=\sqrt[3]{\sqrt{8}+4}-\sqrt[3]{\sqrt{8}-4}$ is a root to the equation $ax^3+bx^2+cx+d=0$. Find the possible values for $(a,\,b,\,c,\,d)$.
 
Mathematics news on Phys.org
anemone said:
Given $a,\,b,\,c$ and $d$ are all integers such that $x=\sqrt[3]{\sqrt{8}+4}-\sqrt[3]{\sqrt{8}-4}$ is a root to the equation $ax^3+bx^2+cx+d=0$. Find the possible values for $(a,\,b,\,c,\,d)$.

$x=\sqrt[3]{\sqrt{8}+4}-\sqrt[3]{\sqrt{8}-4}$
cube both sides to get
$x^3 = \sqrt{8}+4 - (\sqrt{8}- 4) - 3\sqrt[3]((\sqrt{8}+4)(\sqrt{8}-4))x$
or $x^3=8-3\sqrt[3](8-16)x=8+6x$
or $x^3- 6x -8=0$ so $a = t, b = 0, c = -6t , d= -8t $ where t is any non zero integer
 
Last edited:
$$\begin{align*}x^3 &= \sqrt{8} + 4 - \sqrt{8} + 4 + 3\left( -\left(\sqrt[3]{\sqrt{8} + 4}\right)^2 \sqrt[3]{\sqrt{8} - 4} + \sqrt[3]{\sqrt{8} + 4} \left(\sqrt[3]{\sqrt{8} - 4}\right)^2 \right) \\
&= 8 + 3\sqrt[3]{\sqrt{8} + 4} \sqrt[3]{\sqrt{8} - 4}\left( -x \right) \\
&= 8 - 3\sqrt[3]{8-16}x \\
&= 8 + 6x \end{align*}$$

Thus

$$a = t,\ b = 0,\ c = -6t,\ d = -8t,\ t \in \mathbb{R} \smallsetminus 0.$$
 
Hi kaliprasad and Theia!

Very well done to the both of you! And thanks for participating!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top