Possible integer values for coefficients of cubic equation with given root

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
Click For Summary
SUMMARY

The discussion centers on finding integer coefficients \( (a, b, c, d) \) for the cubic equation \( ax^3 + bx^2 + cx + d = 0 \) where \( x = \sqrt[3]{\sqrt{8}+4} - \sqrt[3]{\sqrt{8}-4} \) is a root. Participants confirmed that the values of \( a, b, c, \) and \( d \) must be integers, and they explored various combinations that satisfy the equation. The engagement highlighted the importance of understanding cubic equations and their roots in algebra.

PREREQUISITES
  • Understanding of cubic equations and their roots
  • Familiarity with algebraic manipulation of expressions
  • Knowledge of integer properties in polynomial equations
  • Basic skills in solving equations involving radicals
NEXT STEPS
  • Research methods for solving cubic equations with integer coefficients
  • Explore the Rational Root Theorem for polynomial equations
  • Study the properties of radicals and their simplifications
  • Learn about Vieta's formulas and their application in polynomial roots
USEFUL FOR

Mathematicians, algebra students, and educators focusing on polynomial equations and their integer solutions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $a,\,b,\,c$ and $d$ are all integers such that $x=\sqrt[3]{\sqrt{8}+4}-\sqrt[3]{\sqrt{8}-4}$ is a root to the equation $ax^3+bx^2+cx+d=0$. Find the possible values for $(a,\,b,\,c,\,d)$.
 
Mathematics news on Phys.org
anemone said:
Given $a,\,b,\,c$ and $d$ are all integers such that $x=\sqrt[3]{\sqrt{8}+4}-\sqrt[3]{\sqrt{8}-4}$ is a root to the equation $ax^3+bx^2+cx+d=0$. Find the possible values for $(a,\,b,\,c,\,d)$.

$x=\sqrt[3]{\sqrt{8}+4}-\sqrt[3]{\sqrt{8}-4}$
cube both sides to get
$x^3 = \sqrt{8}+4 - (\sqrt{8}- 4) - 3\sqrt[3]((\sqrt{8}+4)(\sqrt{8}-4))x$
or $x^3=8-3\sqrt[3](8-16)x=8+6x$
or $x^3- 6x -8=0$ so $a = t, b = 0, c = -6t , d= -8t $ where t is any non zero integer
 
Last edited:
$$\begin{align*}x^3 &= \sqrt{8} + 4 - \sqrt{8} + 4 + 3\left( -\left(\sqrt[3]{\sqrt{8} + 4}\right)^2 \sqrt[3]{\sqrt{8} - 4} + \sqrt[3]{\sqrt{8} + 4} \left(\sqrt[3]{\sqrt{8} - 4}\right)^2 \right) \\
&= 8 + 3\sqrt[3]{\sqrt{8} + 4} \sqrt[3]{\sqrt{8} - 4}\left( -x \right) \\
&= 8 - 3\sqrt[3]{8-16}x \\
&= 8 + 6x \end{align*}$$

Thus

$$a = t,\ b = 0,\ c = -6t,\ d = -8t,\ t \in \mathbb{R} \smallsetminus 0.$$
 
Hi kaliprasad and Theia!

Very well done to the both of you! And thanks for participating!
 

Similar threads

Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
3K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K