Possible values and their Probability of Measuring S^2 - Spin

cp51
Messages
10
Reaction score
0

Homework Statement


I have a two spin 1/2 particles. The Hamiltonian for the system is given as H = w1 S1z + w2 S2z. I need to find the possible values and their probabilities when I measure S^2 at some later time T. Also the Initial state \Psi (0) = a | \uparrow \downarrow > + b | \downarrow \uparrow>

Homework Equations


The Attempt at a Solution



Now I know for a 2 spin 1/2 particle system, s = 1 and 0.

The eigenvalue equation for S2 is S2|sm> = hbar2 ( s ( s+1) )|sm>

So the possible values are 2 \hbar^2 and 0.

I know at some later time, the state will look like \Psi(t) = a e{-iE_1 t/ \hbar} + b e{-iE_2 t/ \hbar}

and I can find E_1 and E_2

However, how do i find the probabilities?

If I was just looking for S_z probabilities, I know it would be a2 for spin up and b2 for spin down. I also know that if I was looking for S_x I would need to evolve the coefficients in time. However, how do I measure the probabilities of S2?
 
Physics news on Phys.org
You need to express |\psi(t)\rangle in terms of the eigenstates of S2. Do you know how to do that?
 
Hmm, I'm not positive... is that writing it in |10> and |00> states? I am not exactly sure how to do this. Can you help get me moving in the right direction?

thanks for the help.
 
Yes, that's what I mean. Do you know how to express those states as linear combinations of |\uparrow\,\downarrow\,\rangle and |\downarrow\,\uparrow\,\rangle? If not, you should figure out how to do that. It's probably covered in your textbook as it's a pretty common example of the addition of angular momentum.
 
Ok, I think I got it,

so using:

e1 = \frac{1}{\sqrt{2}}(|+,-> + |-,+>) with eigenvalue 2hbar^2

and

e2 = \frac{1}{\sqrt{2}}(|+,-> - |-,+>) with eigenvalue 0

I rewrite: |+,-> as (e1 + e2)*(sqrt(2)/2) and |-,+> as (e1 - e2)*(sqrt(2)/2)

Combine e1 and e2 terms. And then the coefficients squared give me the probabilities of measuring each eigenvalue as a function of time.

Sound good?

Thanks for your help.
 
Yup, good job!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top