Potential due to a finite charged wire

AI Thread Summary
The discussion focuses on calculating the electric potential at point O due to a finite charged wire configuration. The potential contributions from the leftmost, semicircular, and rightmost sections of the wire are derived using integrals, leading to a total potential expression of V(O) = (λ(π + ln(9))) / (4πε₀). Symmetry is highlighted, confirming that the left and right straight sections yield equal potential at point O. A correction was made in the calculations, thanks to input from another user. The conversation emphasizes the importance of symmetry in electric potential calculations.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A wire of finite length has linear positive charge density ##\lambda##
What is the potential at point O?
Relevant Equations
##V(r)=\frac{q}{4\pi\varepsilon_0 r}##
Considering a reference frame with ##x=0## at the leftmost point I have for the leftmost piece of wire: ##\int_{x=0}^{x=2R}\frac{\lambda dx}{4\pi\varepsilon_0 (3R-x)}=\frac{\lambda ln(3)}{4\pi\varepsilon_0}##.
The potential at O due to the semicircular piece of wire at the center is ##\int_{\theta=0}^{\theta=\pi}\frac{\lambda Rd\theta}{4\pi\varepsilon_0 R}=\frac{\lambda}{4\varepsilon_0}##.
The potential at O due to the rightmost piece of wire is, by symmetry, the same as that due to the leftmost piece of wire ##(\int_{x=R}^{x=3R}\frac{\lambda dx}{4\pi\varepsilon_0 x}=\frac{\lambda ln(3)}{4\pi\varepsilon_0}).##

So, the total potential at O is ##V(O)=2\frac{\lambda ln(3)}{4\pi\varepsilon_0}+\frac{\lambda}{4\varepsilon_0}=\frac{\lambda(\pi+ln(9))}{4\pi\varepsilon_0}##.

Does this make sense? Thanks
 

Attachments

  • potential_wire.png
    potential_wire.png
    2.4 KB · Views: 146
Last edited:
Physics news on Phys.org
Wouldn't the left and right straight sections yield the same potential at O :wideeyed: ? (you know, symmetry and all that...)

##\ ##
 
lorenz0 said:
##(4R+x)##? How do you get that?
 
BvU said:
Wouldn't the left and right straight sections yield the same potential at O :wideeyed: ? (you know, symmetry and all that...)

##\ ##
Yes; I have edited my answer, thanks.
 
That was a mistake, which I have corrected thanks to user BvU.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top