A Potential Energy of Relativistic Particles in Coulomb Field

reterty
Messages
29
Reaction score
2
Let us consider relativistic particle (electron) which moves with relativistic speed ##v## in the Coulomb field (in the field of a fixed heavy nucleus). The main question is what is the potential energy of a particle in such a static field? Landau and Lifshitz in their book "Field Theory" believe that the potential energy is not renormalized in any way and is equal to ##\frac{qQ}{r}##. At the same time, a number of authors of original articles on this topic introduce a reduced distance ##r\sqrt{1-v^2/c^2}## into the denominator of this fraction due to the relativistic effect of the reduction in linear dimensions. Which of them is right?
 
Last edited:
Physics news on Phys.org
I guess you mean the relativistic motion of a charged particle in the coulomb field of a very much heavier particle, neglecting the radiation reaction. The relativistic equation of motion in the non-covariant formalism is derived from the Lagrangian
$$L=-mc^2 \sqrt{1-\dot{\vec{x}}^2} + \frac{q Q}{4 \pi \epsilon_0 |\vec{x}|}.$$
It's of some historical interest since it was Sommerfeld's derivation of the fine structure of the hydrogen-atom spectrum within old quantum theory. It's kind of surprising that he got the correct result although the model is, of course, entirely wrong, i.e., it doesn't take into account the spin 1/2 of the electron and the gyrofactor 2 (both of which weren't known in 1916). That's why you find the solution in Wikipedia here:

https://en.wikipedia.org/wiki/Bohr–Sommerfeld_model#Relativistic_orbit
 
  • Like
Likes topsquark, PeroK and malawi_glenn
reterty said:
$r\sqrt{1-v^2/c^2}$
Please note that on this website you need to use a double-$ instead of a single-$ for LaTeX to work.
$$r\sqrt{1-v^2/c^2}$$
 
DrGreg said:
on this website you need to use a double-$ instead of a single-$ for LaTeX to work
Or a double # for inline LaTeX (the double $ means an equation in its own paragraph).
 
  • Like
Likes topsquark and vanhees71
For example: https://www.researchgate.net/publication/305345527_A_New_Relativistic_Extension_of_the_Harmonic_Oscillator_Satisfying_an_Isochronicity_Principle
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top