A Potential Energy of Relativistic Particles in Coulomb Field

reterty
Messages
29
Reaction score
2
Let us consider relativistic particle (electron) which moves with relativistic speed ##v## in the Coulomb field (in the field of a fixed heavy nucleus). The main question is what is the potential energy of a particle in such a static field? Landau and Lifshitz in their book "Field Theory" believe that the potential energy is not renormalized in any way and is equal to ##\frac{qQ}{r}##. At the same time, a number of authors of original articles on this topic introduce a reduced distance ##r\sqrt{1-v^2/c^2}## into the denominator of this fraction due to the relativistic effect of the reduction in linear dimensions. Which of them is right?
 
Last edited:
Physics news on Phys.org
I guess you mean the relativistic motion of a charged particle in the coulomb field of a very much heavier particle, neglecting the radiation reaction. The relativistic equation of motion in the non-covariant formalism is derived from the Lagrangian
$$L=-mc^2 \sqrt{1-\dot{\vec{x}}^2} + \frac{q Q}{4 \pi \epsilon_0 |\vec{x}|}.$$
It's of some historical interest since it was Sommerfeld's derivation of the fine structure of the hydrogen-atom spectrum within old quantum theory. It's kind of surprising that he got the correct result although the model is, of course, entirely wrong, i.e., it doesn't take into account the spin 1/2 of the electron and the gyrofactor 2 (both of which weren't known in 1916). That's why you find the solution in Wikipedia here:

https://en.wikipedia.org/wiki/Bohr–Sommerfeld_model#Relativistic_orbit
 
  • Like
Likes topsquark, PeroK and malawi_glenn
reterty said:
$r\sqrt{1-v^2/c^2}$
Please note that on this website you need to use a double-$ instead of a single-$ for LaTeX to work.
$$r\sqrt{1-v^2/c^2}$$
 
DrGreg said:
on this website you need to use a double-$ instead of a single-$ for LaTeX to work
Or a double # for inline LaTeX (the double $ means an equation in its own paragraph).
 
  • Like
Likes topsquark and vanhees71
For example: https://www.researchgate.net/publication/305345527_A_New_Relativistic_Extension_of_the_Harmonic_Oscillator_Satisfying_an_Isochronicity_Principle
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Back
Top