Potential function for conservative vector field

Click For Summary
The discussion focuses on finding a potential function for the conservative vector field F = <x + y, x - z, z - y>. The initial steps involve integrating the first component of the vector field to derive a function f and determining the relationship between the components through derivatives. Participants suggest that attention should be paid to the variables with respect to which derivatives are taken, emphasizing the importance of integrating correctly. There is a debate about the order of integration, with some preferring to integrate each partial differential equation separately. The conversation highlights the complexity of deriving the potential function while ensuring accuracy in calculations.
kasse
Messages
383
Reaction score
1
[SOLVED] Potential function for conservative vector field

Homework Statement



Find a potential function for the conservative vector field F = <x + y, x - z, z - y>
[/color]



2. The attempt at a solution

OK, we know that

(1) fx = x + y
(2) fy = x - z og
(3) fz = z - y

We can then integrate (1) with respect to x, and we get

(4) f = (1/2)x2 + xy + C(y,z)

We then differentiate (4) wrt y and get:

(5) fy = x + C'(y,z)

Comparing (2) and (5):

(6) C'(y,z) = -z

Integrate this wrt z:

(7) C(y,z) = -(1/2)z2 + C(y)

We then have the following expression for the potential function so far:

(8) f = (1/2)x2 + xy + -(1/2)z2 + C(y)

Then I'm stuck. Is my method correct so far?
 
Physics news on Phys.org
In step (6) when you write C'(y,z)=(-z) the prime means derivative wrt y. So I wouldn't integrate wrt z. You're on the right track. Just pay more attention to what variable the derivatives are taken wrt.
 
kasse said:
OK, we know that

(1) fx = x + y
(2) fy = x - z og
(3) fz = z - y

We can then integrate (1) with respect to x, and we get

(4) f = (1/2)x2 + xy + C(y,z)

We then differentiate (4) wrt y and get:

(5) fy = x + C'(y,z)

Comparing (2) and (5):

(6) C'(y,z) = -z

I was with you up to here. Why did you compare (2) and (5) and then integrate with respect to z? It seems to me that if you'd integrated with respect to y first, you'd have gotten

C(y,z) = -yz + C(z) ,

from which point you should be all right...

I guess I prefer integrating each partial differential equation separately and then intercomparing all three. As long as the equations are too complicated, things usually fall into place pretty well.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
6
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K