Power Loss Due to An Eddy Current

Click For Summary

Discussion Overview

The discussion centers on the topic of power loss due to eddy currents in materials subjected to magnetic flux. Participants explore the mathematical formulation of this phenomenon, particularly focusing on the integration bounds used in calculating power loss and the implications of different approaches to resistance and area calculations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant summarizes the process of calculating power loss due to eddy currents, referencing a specific formula and questioning the integration bounds used in the calculation.
  • Another participant critiques the clarity of the original diagram and suggests that the notation for thickness may have been misrepresented.
  • A participant clarifies that the terms "T" and "τ" refer to the same quantity and provides a link to a clearer diagram.
  • One participant explains that the integration bounds of [0, τ/2] are appropriate because the negative interval is already accounted for in the area and resistance formulas, presenting detailed mathematical justifications for their reasoning.
  • The same participant elaborates on the implications of using different integration bounds and provides a series of equations to support their argument regarding the calculation of power loss.

Areas of Agreement / Disagreement

Participants express differing views on the appropriate bounds for integration in the power loss calculation. There is no consensus on whether the bounds should be [0, τ/2] or [-τ/2, τ/2], indicating an unresolved debate regarding the mathematical approach.

Contextual Notes

The discussion includes various assumptions about the definitions of terms and the mathematical steps involved in the calculations, which remain unresolved. The clarity of diagrams and notation is also a point of contention.

BlackMelon
Messages
43
Reaction score
7
TL;DR
Finding power loss due to eddy current
Reference website: https://www.electricalvolt.com/2019/08/eddy-current-loss-formula/?expand_article=1
Hi there!

Recently, I am studying this kind of power loss from the following link:
https://www.electricalvolt.com/2019/08/eddy-current-loss-formula/?expand_article=1
Just to summarize an idea,
1690045667855.png

Supposed that we got a material, which is penetrated by a magnetic flux. The material will generate the eddy current to oppose the change of the flux.
We divide this material into portions.
We treat each of the portion as a one-turn coil, having I_eddy flowing through.
Use the Faraday's Law to find the induced voltage (E) in each portion.
Use R = rho*(length)/(area) to find the resistance of each portion (that I_eddy flows through)
The power loss of each portion is dP = E^2/R
Integrate dP over all the portions to get "P: The power loss due to eddy current."
1690043122977.png

From this equation in the link, I am curious why the bounds of the integration is 0 to T/2. Should it be -T/2 to +T/2 instead?
(Please look at the diagram in the aformentioned link)

Best Regards,
BlackMelon
 
Last edited:
Physics news on Phys.org
Your diagram is hard to read as posted, although not impossible. I don't see any "T", or, "τ", which is what I think you meant. Don't make it hard for people to help you, they may just give up and move on. Please communicate clearly, we are not clairvoyant.
 
Hi All,
I'm sorry for the my unclear drawing. Please download it from here:
https://www.mediafire.com/file/tftzo99pddsvzhj/EddyCurrentLoss.png/file

According to the diagram in this link:
https://www.electricalvolt.com/2019/08/eddy-current-loss-formula/?expand_article=1
T and τ are the same. It is said "Let the length, height and thickness of the laminated sheet is L,h and𝞃 respectively". However on the diagram, the thickness is represented by T, instead of 𝞃. The dotted line represents the reference position, where x = 0.
 
The interval of the integration is ## [0, \frac \tau 2] ## because the interval ## [-\frac \tau 2, 0] ## is already included into the integration through the formula for the area which is ## A = 2 h x = 2 \cdot h x ## and through the formula for the resistance which is ## R = \rho \cdot \frac {2 h + 4 x} {L dx} = 2 \cdot \rho \cdot \frac {h + 2 x} {L dx} ##.

If the interval of the integration is ## [-\frac \tau 2, \frac \tau 2] ## the formula for the area will be ## A = h x ## , the formula for the resistance will be ## R = \rho \cdot \frac {h + 2 x} {L dx} ##

and there will be next:

## \Phi (t) = B (t) \cdot A = B_{max} \cdot \sin (\omega t) \cdot h x ##

## E = \frac {\sqrt 2} {2} \cdot B_{max} \cdot 2 \pi f \cdot h x ##
## E = \sqrt 2 \cdot B_{max} \cdot \pi f \cdot h x ##

## dP = \frac {E^2} {R} ##
## dP = E^2 \cdot \frac {L dx} {\rho \cdot (h + 2 x)} ##
## dP = E^2 \cdot \frac {L dx} {\rho \cdot h} ##
## dP = (\sqrt 2 \cdot B_{max} \cdot \pi f \cdot h x)^2 \cdot \frac {L dx} {\rho \cdot h} ##
## dP = 2 \cdot B_{max}^2 \cdot \pi^2 f^2 \cdot h^2 x^2 \cdot \frac {L dx} {\rho \cdot h} ##
## dP = 2 \cdot B_{max}^2 \cdot \pi^2 f^2 \cdot h x^2 \cdot \frac {L dx} {\rho} ##

## P_{eddy} = \frac {2 \pi^2 \cdot B_{max}^2 \cdot f^2 \cdot h L} {\rho} \cdot \int_{-\frac \tau 2}^{\frac \tau 2} x^2 \, dx ##
## P_{eddy} = \frac{2 \pi^2 \cdot B_{max}^2 \cdot f^2 \cdot h L} {\rho} \cdot (\int_{-\frac \tau 2}^{0} x^2 \, dx + \int_{0}^{\frac \tau 2} x^2 \, dx) ##
## \int_{-\frac \tau 2}^{0} x^2 \, dx = \int_{0}^{\frac \tau 2} x^2 \, dx ##
## P_{eddy} = \frac{2 \pi^2 \cdot B_{max}^2 \cdot f^2 \cdot h L} {\rho} \cdot (\int_{0}^{\frac \tau 2} x^2 \, dx + \int_{0}^{\frac \tau 2} x^2 \, dx) ##
## P_{eddy} = \frac{2 \pi^2 \cdot B_{max}^2 \cdot f^2 \cdot h L} {\rho} \cdot 2 \int_{0}^{\frac \tau 2} x^2 \, dx ##
## P_{eddy} = \frac {4 \pi^2 \cdot B_{max}^2 \cdot f^2 \cdot h L} {\rho} \cdot \int_{0}^{\frac \tau 2} x^2 \, dx ##
## P_{eddy} = \frac{\pi^2 \cdot f^2 \cdot B_{max}^2 \tau^2 } {6 \rho}\cdot (h L \tau) ##
.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
26
Views
6K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K