Using Power Series to Evaluate ln and sin at a Given Point

Click For Summary
SUMMARY

This discussion focuses on using power series to evaluate the expression ln(x + √(1 + x²)) - sin(x) at the point x = 0.001. Key power series utilized include ln(1+x) = Σ((-1)^(n+1)x^n/n), the binomial series for (1+x)^(1/2), and sin(x) = Σ((-1)^(n)x^(2n+1)/(2n+1)!). The participants clarify the correct application of these series and emphasize the importance of understanding the distinct meanings of constants in the expansions. The conversation concludes with a method to simplify the logarithmic expression using the series for ln(1+z).

PREREQUISITES
  • Understanding of power series expansions
  • Familiarity with logarithmic functions and their properties
  • Knowledge of the binomial series and its applications
  • Basic calculus concepts, particularly Taylor series
NEXT STEPS
  • Study the derivation of the binomial series for non-integer exponents
  • Learn how to apply Taylor series to evaluate functions at specific points
  • Explore the convergence criteria for power series
  • Investigate the relationship between logarithmic and exponential functions in series form
USEFUL FOR

Students and educators in mathematics, particularly those studying calculus and series expansions, as well as anyone interested in applying power series to evaluate complex functions.

ngc2024
Messages
15
Reaction score
0

Homework Statement


"Use power series to evaluate the function at the given point"
## ln (x+ \sqrt{1+{x^2}}) - sin x ##

at ## x = 0.001 ##

Homework Equations


Relevant power series:
A: ## ln (1+x) = \Big( \sum_{n=0}^\infty\frac{({(-1)^{n+1}}{x^n})}{n} \Big) ##

B: ## {(1+x)^p} = \sum_{n=0}^{\infty }\binom{p}{n}{x^n} ##

C: ## sin x = \Big ( \sum_{n=0}^\infty\frac{({(-1)^{n}{x}^{2n+1}})}{(2n+1)!} \Big) ##

3. The Attempt at a Solution

Starting out with the logarithmic expression, there are two power series.

If ## \sqrt{1+{x^2}} = y ##

then ## ln (x+y) = \Big( \sum_{n=0}^\infty\frac{({(-x)^{n+1}}{y^n})}{n} \Big) ##

and ## y = \sum_{n=0}^{\infty }\binom{(\frac{1}{2})}{n}{({(x^2)^n)}} ##

I hope I am correct this far? Of course, I can now expand the series and multiply term by term, but this is quite tedious - especially since (using wolfram alpha), the first terms are in the power of 5 and 7. I also tried making a general expression, but then I end up with something like..
## ln (x+y) = \Big( \sum_{n=0}^\infty\frac{({(-x)^{n+1}})}{n} \Big) * (\sum_{n=0}^{\infty }\binom{(\frac{1}{2})}{n}{({(x^2)^n)}}) ##

.. and I don't know how to simplify this.

There must be some obvious mistake, or a simpler way to do this?
 
Physics news on Phys.org
ngc2024 said:
If ## \sqrt{1+{x^2}} = y ##

then ## ln (x+y) = \Big( \sum_{n=0}^\infty\frac{({(-x)^{n+1}}{y^n})}{n} \Big) ##
That does not look right and I don't see where this comes from. You cannot simply replace occurences of 1 by a variable. In particular, the two occurences of "1" in the expansion given above have a completely different meaning.

and ## y = \sum_{n=0}^{\infty }\binom{(\frac{1}{2})}{n}{({(x^2)^n)}} ##
What is ##\binom{(\frac{1}{2})}{n}##?
There is a power series for ##\sqrt{1+x}## that you can use.

With the correct power series, it is sufficient to consider the first few terms - I guess you just need the first non-vanishing order of x.
 
"In particular, the two occurrences of "1" in the expansion given above have a completely different meaning."
Yes, I was unsure of this.

And maybe I was unclear - I used the binomial series to expand ## \sqrt{1+{x^2}} ##
## \sqrt{1+{x^2}} = \sum_{0}^{\infty }\binom{\frac{1}{2}}{n}{(x^2)^n} = 1 + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16} ... ## where ## \binom{\frac{1}{2}}{n} ## is the binomial expression 0.5 choose n.
I think this is correct?

I don't fully understand, however - how do I make a power series of:
## ln (1 + x + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16}...) ## ... ?
 
Okay, I found the appropriate generalization of the standard binomial coefficients needed for that.

##\ln(1+x+\frac{x^2}{2}+...) = \ln(1+c)= ...## with c coming from the sum. You won't need many terms to find one that does not cancel.
 
  • Like
Likes   Reactions: ngc2024
Of course! Thanks!
 
ngc2024 said:
"In particular, the two occurrences of "1" in the expansion given above have a completely different meaning."
Yes, I was unsure of this.

And maybe I was unclear - I used the binomial series to expand ## \sqrt{1+{x^2}} ##
## \sqrt{1+{x^2}} = \sum_{0}^{\infty }\binom{\frac{1}{2}}{n}{(x^2)^n} = 1 + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16} ... ## where ## \binom{\frac{1}{2}}{n} ## is the binomial expression 0.5 choose n.
I think this is correct?

I don't fully understand, however - how do I make a power series of:
## ln (1 + x + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16}...) ## ... ?

Write ##1 + x + \frac{x^2}{2} - \frac{x^4}{8} + \frac{x^6}{16} + \cdots## as ##1+z##, and use the series for ##\ln(1+z)## in powers of ##z##.
 
  • Like
Likes   Reactions: ngc2024

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
974
  • · Replies 9 ·
Replies
9
Views
3K