# What is Series expansion: Definition and 186 Discussions

In mathematics, a series expansion is a method for calculating a function that cannot be expressed by just elementary operators (addition, subtraction, multiplication and division).
The resulting so-called series often can be limited to a finite number of terms, thus yielding an approximation of the function. The fewer terms of the sequence are used, the simpler this approximation will be. Often, the resulting inaccuracy (i.e., the partial sum of the omitted terms) can be described by an equation involving Big O notation (see also asymptotic expansion). The series expansion on an open interval will also be an approximation for non-analytic functions.
There are several kinds of series expansions, such as:

Taylor series: A power series based on a function’s derivatives at a single point.
Maclaurin series: A special case of a Taylor series, centred at zero.
Laurent series: An extension of the Taylor series, allowing negative exponent values.
Dirichlet series: Used in number theory.
Fourier series: Describes periodical functions as a series of sine and cosine functions. In acoustics, e.g., the fundamental tone and the overtones together form an example of a Fourier series.
Newtonian series
Legendre polynomials: Used in physics to describe an arbitrary electrical field as a superposition of a dipole field, a quadrupole field, an octupole field, etc.
Zernike polynomials: Used in optics to calculate aberrations of optical systems. Each term in the series describes a particular type of aberration.
Stirling series: Used as an approximation for factorials.

View More On Wikipedia.org
1. ### I Expansion of 1/|x-x'| into Legendre Polynomials

we know that we can expand the following function in Legendre polynomials in the following way in the script given yo us by my professor, ##\frac 1 {|\vec x -\vec x'|}## is expanded using geometric series in the following way: However, I don't understand how ##\frac 1 {|\vec x -\vec...
2. ### Show that if ##x>1##, ##\log_e\sqrt{x^2-1}=\log_ex-\dfrac{1}{2x^2}-##

##\log_e\sqrt{x^2-1}=\dfrac{1}{2}[\log_e[(x+1)(x-1)]]=\dfrac{1}{2}[\log_e(x+1)+\log_e(x-1)]##. ##\Rightarrow \log_e(x-1)=\log_e[x(1-\dfrac{1}{x})]=\log_ex+\log_e(1-\dfrac{1}{x})## We know: ##\log_e(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots##...
3. ### A Series expansion of ##(1-cx)^{1/x}##

I am trying to understand the series expansion of $$(1-cx)^{1/x}$$ The wolframalpha seems to solve the problem by using taylor series for ## x\rightarrow 0## and Puiseux series for ##x\rightarrow \infty##. Any ideas how can I calculate them ...
4. F

### Link between Z-transform and Taylor series expansion

Hello, I am reading a course on signal processing involving the Z-transform, and I just read something that leaves me confused. Let ##F(z)## be the given Z-transform of a numerical function ##f[n]## (discrete amplitudes, discrete variable), which has a positive semi-finite support and finite...
5. ### Mathematica Series expansion from the red book on special functions by Richard Ask

I want to check my calculations via mathematica. In the book I am reading there's this expansion: $$\frac{(1+\frac{1}{j})^x}{1+x/j}=1+\frac{x(x-1)}{2j^2}+\mathcal{O}(1/j^3)$$ though I get instead of the term ##\frac{x(x-1)}{2j^2}## in the rhs the term: ##-\frac{x(x+1)}{2j^2}##. So I want to...
6. ### Help with 2nd order Runge Kutta and series expansion

So here's my homework question: This is the reference formula along with the Rung-Kutta form with the variables mentioned in the question Here is my attempt so far: Problem is that i am unsure how to expand this to even get going. I tried referencing my text Math Methods by Boas which has...
7. ### Analysis Books for learning Fourier series expansion

Hello Everyone! I want to learn about Fourier series (not Fourier transform), that is approximating a continuous periodic function with something like this ##a_0 \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)##. I tried some videos and lecture notes that I could find with a google search but...