I can not find a solid explanation on this anywhere, so forgive me if this has been addressed already.(adsbygoogle = window.adsbygoogle || []).push({});

Given something like y''+y'-(x^2)y=1 or y''+2xy'-y=x, how do I approach solving a differential with a power series solution when the differential does not equal zero?

Would I solve the left hand side as normally with series substitution as if it were equal to zero, then expand it out and equate the coefficients with the right hand side? Or would I just expand it out after substituting the series for y and then equate the coefficients?

Also, if I set it equal to zero and solve it, would this be a complimentary/homogeneous solution, meaning I would have to solve for a particular solution? If so, how should I solve for the particular solution?

I want to thank everyone in advance for their considerations. I know this is a basic question, but I have no clarification on it and it is leaving me frustrated.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Power series solution, differential equation question

Loading...

Similar Threads - Power series solution | Date |
---|---|

Seek power series solutions of the given differential equation | Aug 31, 2015 |

Nonhomogeneous Power Series Solution | Mar 15, 2012 |

Factorial question in a power series solution | Oct 30, 2011 |

Power series solutions for ODEs. When are there how many of them? | Apr 2, 2011 |

Non homogeneous differential equation - power series solution | Dec 2, 2009 |

**Physics Forums - The Fusion of Science and Community**