Pr of exactly one dice showing 2

  • Context: MHB 
  • Thread starter Thread starter navi
  • Start date Start date
  • Tags Tags
    Dice
Click For Summary

Discussion Overview

The discussion revolves around calculating the probability of specific outcomes when rolling two fair dice, specifically focusing on the probability of one die showing a 2 or the sum of the dice being at least 8. Participants explore the correct application of probability formulas and the implications of overlapping events.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant calculates the probability of the sum being at least 8 as 15/36 and the probability of exactly one die showing 2 as 10/36, but is informed that these need to be combined using the formula for the union of two events.
  • Another participant explains the need to subtract the probability of both events occurring to avoid double counting, citing an example where both conditions are satisfied.
  • A follow-up question arises regarding the probability of the intersection of the two events, with one participant suggesting it should be 2/36, while another insists it is 1/36.
  • It is noted that the original problem statement may imply a different interpretation of the events, potentially increasing the probability of one die showing 2 to 11/36.
  • Participants also correct the terminology used in the thread title and initial problem statement regarding the singular and plural forms of "die" and "dice."
  • One participant presents a different approach to calculating the probabilities based on specific outcomes of the rolls.

Areas of Agreement / Disagreement

Participants express differing views on the correct calculation of the intersection probability and the interpretation of the problem statement. There is no consensus on the final probability values or the implications of the problem's wording.

Contextual Notes

There are unresolved assumptions regarding the interpretation of the problem statement and the definitions of the events involved, which may affect the calculated probabilities.

navi
Messages
12
Reaction score
0
So I ran into this problem:

You roll two fair die. What is the probability of one of the dice showing 2 or the sum being at least 8?

I thought it should be: 15/36 for the sum being at least 8 and 10/36 for exactly one dice showing 2, but it tells me it is wrong. I got these numbers by constructing a chart that showed the outcomes of the 2 die rolls.
 
Physics news on Phys.org
navi said:
So I ran into this problem:

You roll two fair die. What is the probability of one of the dice showing 2 or the sum being at least 8?

I thought it should be: 15/36 for the sum being at least 8 and 10/36 for exactly one dice showing 2, but it tells me it is wrong. I got these numbers by constructing a chart that showed the outcomes of the 2 die rolls.
You have given two answers, but the question wants a single answer.

Let $A$ stand for "the sum being at least 8", and let $B$ stand for "exactly one of the dice showing 2". You have correctly found the probabilities $\def\Prob{\operatorname{Prob}\,}\Prob(A) = \frac{15}{36}$ and $\Prob(B) = \frac{10}{36}.$ But the question asks for $\Prob(A\text{ or }B)$, in other words the probability of the dice showing either $A$ or $B$ (or possibly both). For that, you need to use the formula $\Prob(A\text{ or }B) = \Prob(A) + \Prob(B) - \Prob(A\text{ and }B)$.
 
Opalg said:
You have given two answers, but the question wants a single answer.

Let $A$ stand for "the sum being at least 8", and let $B$ stand for "exactly one of the dice showing 2". You have correctly found the probabilities $\def\Prob{\operatorname{Prob}\,}\Prob(A) = \frac{15}{36}$ and $\Prob(B) = \frac{10}{36}.$ But the question asks for $\Prob(A\text{ or }B)$, in other words the probability of the dice showing either $A$ or $B$ (or possibly both). For that, you need to use the formula $\Prob(A\text{ or }B) = \Prob(A) + \Prob(B) - \Prob(A\text{ and }B)$.

Thank you! I do not understand why you are subtracting the probability of A and B, though. Could you explain to me why?
 
navi said:
Thank you! I do not understand why you are subtracting the probability of A and B, though. Could you explain to me why?
It's in order to avoid double counting. Specifically, if the dice show 2 and 6, then they satisfy both conditions $A$ and $B$. If you just add the probabilities for $A$ and $B$ then you will have counted that case under both headings. So you need to subtract one of them off.
 
Opalg said:
It's in order to avoid double counting. Specifically, if the dice show 2 and 6, then they satisfy both conditions $A$ and $B$. If you just add the probabilities for $A$ and $B$ then you will have counted that case under both headings. So you need to subtract one of them off.

Okay, now I understand! I do have a follow up question, though: why would the probability of the union of A and B be 1/36 and not 2/36? Because it could be first dice 2, second dice 6 or first dice 6, second dice 2.
 
navi said:
Okay, now I understand! I do have a follow up question, though: why would the probability of the union of A and B be 1/36 and not 2/36? Because it could be first dice 2, second dice 6 or first dice 6, second dice 2.
It should indeed be 2/36.
 
Opalg said:
It should indeed be 2/36.

It is a WebWork problem and it accepted this as the correct answer: 10/36 + 15/36 - 1/36
 
navi said:
It is a WebWork problem and it accepted this as the correct answer: 10/36 + 15/36 - 1/36
Here is a possible explanation for that. You entitled this thread "Pr of exactly one dice showing 2", but the statent of the problem only refers to "one of the dice showing 2". I suspect that this may be intended to cover the case when both dice show 2. In that case, the probability of that event goes up from $\frac{10}{36}$ to $\frac{11}{36}$, and the probability of "$A$ or $B$" becomes $\frac{11}{36} + \frac{15}{36} - \frac{2}{36}$, which agrees with the answer accepted by WebWork.
 
By the way, your title, "Pr of one dice showing 2", should be "Pr of one die showing 2" and "you roll two fair die" should be "you roll two fair dice". "Dice" is the plural of the singular "die".
 
  • #10
1st roll: must be 2 or 6: probability = 2/6 = 1/3
2nd roll: must be 2 if 1st was 6, or 6 if 1st was 2: probability = 1/6

1/3 * 1/6 = 1/18
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
8K