MHB Present value of a perpetual annuity

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Annuity Value
AI Thread Summary
The discussion focuses on calculating the present value of a perpetual annuity with annual interest payments of €1. The user seeks clarification on the concepts of interest payments and calculative interest rates. They propose that if the initial capital is denoted as K and the interest rate as r, then after one year, the present value should equal K plus Kr. The user concludes that for the annual payment to equal €1, the equation Kr must equal 1. The inquiry seeks confirmation on the accuracy of this understanding.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

I want to determine the present value of a perpetual annuity, which will incur an interest payment of € 1 at the end of each year.

A calculative interest rate $r$ is assumed.

We are at the time $t = 0$, the first payout is in $t = 1$. Could you explain to me what an interest payment exactly and what a calculative interest rate is? (Wondering)
 
Mathematics news on Phys.org
Let $K$ be the initial capital.
Since the calculative interest rate is $r$ we have that after the first year the present value of a perpetual annuity will be $K+Kr$.
We want that the interest payment at the end of each year is $1$, so the amount of money that we add to the initial capital at the end of each year is $1$ euro, i.e., $Kr=1$.

Is this correct? (Wondering)

Or have I misunderstood the meanings? (Wondering)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top