MHB Primitive Roots Modulo $p$: The $(p-1)/2$ Rule

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Primitive Roots
alexmahone
Messages
303
Reaction score
0
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?
 
Mathematics news on Phys.org
Alexmahone said:
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?
No. For example, take $p=7$ and $g=6$. The congruence is satisfied, but $6$ is not a primitive root$\mod 7$.
 
Alexmahone said:
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?

Hi Alexmahone,

I assume that $p$ is supposed to be an odd prime?

If so, then it is true that $g$ is a primitive root modulo $p$ if and only if the order of $g$ is $p-1$ modulo $p$.

So what we need is that the order of $g$ is $p-1$.
From $g^{(p-1)/2} \equiv -1 \pmod p$, we can only conclude that the order of $g$ is not $(p-1)/2$, but it could still be $(p-1)/3$ or some such.

Opalg's example is showing exactly that, which is the simplest counter example. He picked the smallest odd prime for which $(p-1)/k$ is an integer with $k>2$, and he found a $g$ to match. :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top