MHB Primitive Roots Modulo $p$: The $(p-1)/2$ Rule

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Primitive Roots
Click For Summary
The discussion centers on the condition for a number \( g \) to be a primitive root modulo an odd prime \( p \). It is clarified that \( g \) is a primitive root modulo \( p \) if and only if its order is \( p-1 \). The statement that \( g^{(p-1)/2} \equiv -1 \pmod{p} \) does not guarantee \( g \) is a primitive root, as demonstrated by the example of \( g = 6 \) for \( p = 7 \), which satisfies the congruence but is not a primitive root. The conclusion emphasizes that while the congruence indicates the order is not \((p-1)/2\), it does not rule out other possible orders. Thus, the original assertion is incorrect.
alexmahone
Messages
303
Reaction score
0
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?
 
Mathematics news on Phys.org
Alexmahone said:
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?
No. For example, take $p=7$ and $g=6$. The congruence is satisfied, but $6$ is not a primitive root$\mod 7$.
 
Alexmahone said:
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?

Hi Alexmahone,

I assume that $p$ is supposed to be an odd prime?

If so, then it is true that $g$ is a primitive root modulo $p$ if and only if the order of $g$ is $p-1$ modulo $p$.

So what we need is that the order of $g$ is $p-1$.
From $g^{(p-1)/2} \equiv -1 \pmod p$, we can only conclude that the order of $g$ is not $(p-1)/2$, but it could still be $(p-1)/3$ or some such.

Opalg's example is showing exactly that, which is the simplest counter example. He picked the smallest odd prime for which $(p-1)/k$ is an integer with $k>2$, and he found a $g$ to match. :)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K