MHB Primitive Roots Modulo $p$: The $(p-1)/2$ Rule

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Primitive Roots
AI Thread Summary
The discussion centers on the condition for a number \( g \) to be a primitive root modulo an odd prime \( p \). It is clarified that \( g \) is a primitive root modulo \( p \) if and only if its order is \( p-1 \). The statement that \( g^{(p-1)/2} \equiv -1 \pmod{p} \) does not guarantee \( g \) is a primitive root, as demonstrated by the example of \( g = 6 \) for \( p = 7 \), which satisfies the congruence but is not a primitive root. The conclusion emphasizes that while the congruence indicates the order is not \((p-1)/2\), it does not rule out other possible orders. Thus, the original assertion is incorrect.
alexmahone
Messages
303
Reaction score
0
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?
 
Mathematics news on Phys.org
Alexmahone said:
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?
No. For example, take $p=7$ and $g=6$. The congruence is satisfied, but $6$ is not a primitive root$\mod 7$.
 
Alexmahone said:
Is it true that $g$ is a primitive root modulo $p$ if and only if $g^{(p-1)/2} \equiv -1 \pmod p$?

Hi Alexmahone,

I assume that $p$ is supposed to be an odd prime?

If so, then it is true that $g$ is a primitive root modulo $p$ if and only if the order of $g$ is $p-1$ modulo $p$.

So what we need is that the order of $g$ is $p-1$.
From $g^{(p-1)/2} \equiv -1 \pmod p$, we can only conclude that the order of $g$ is not $(p-1)/2$, but it could still be $(p-1)/3$ or some such.

Opalg's example is showing exactly that, which is the simplest counter example. He picked the smallest odd prime for which $(p-1)/k$ is an integer with $k>2$, and he found a $g$ to match. :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top