MHB Principal Ideal Domains .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    domains
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading The Basics of Abstract Algebra by Paul E. Bland ...

I am focused on Section 7.2 Euclidean Domains, Principal Ideal Domains, Unique Factorization Domains ... ...

I need help with the proof of Lemma 7.2.13 ... ... Lemma 7.2.13 reads as follows:https://www.physicsforums.com/attachments/8255Bland states Lemma 7.2.13 but does not prove it ... can someone please demonstrate a proof ...Peter
 
Physics news on Phys.org
Hi Peter,

If $(a)=(b)$ then $a\in(b)$ and $a=rb$ from some $r\in D$; a similar argument shows that $b=sa$ for some $s\in D$.
We have therefore $a = rb = (rs)a$ and $a(rs-1)=0$. As we are in an integral domain, this implies $rs=1$, which means that $r$ and $s$ are units and $a$ and $b$ are associates.

Conversely, if $a=rb$, we have $a\in(b)$ and $(a)\subset(b)$; a similar argument shows that $(b)\subset(a)$, and therefore $(a)=(b)$.
 
castor28 said:
Hi Peter,

If $(a)=(b)$ then $a\in(b)$ and $a=rb$ from some $r\in D$; a similar argument shows that $b=sa$ for some $s\in D$.
We have therefore $a = rb = (rs)a$ and $a(rs-1)=0$. As we are in an integral domain, this implies $rs=1$, which means that $r$ and $s$ are units and $a$ and $b$ are associates.

Conversely, if $a=rb$, we have $a\in(b)$ and $(a)\subset(b)$; a similar argument shows that $(b)\subset(a)$, and therefore $(a)=(b)$.
Thanks castor28 ... appreciate your help ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top