MHB Principal Ideal Rings and GCDs .... .... Bland Proposition 4.3.3

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.3: Modules Over Principal Ideal Domains ... and I need some help to fully understand the proof of part of Proposition 4.3.3 ... ...

Proposition 4.3.3 reads as follows:View attachment 8247
View attachment 8248
In the above proof by Bland we read the following:

"... ... If $$(d) = a_1 R + a_2 R + \ ... \ ... \ + a_n R$$, then each $$a_i$$ is in $$(d)$$ ... ... "Can someone please explain how $$(d) = a_1 R + a_2 R + \ ... \ ... \ + a_n R$$ implies each $$a_i$$ is in $$(d)$$ ... ..Peter
 
Physics news on Phys.org
Hi Peter,
$$a_1 = a_1\cdot 1 + a_2 \cdot 0 + \cdots + a_n \cdot 0 \in (d)$$ and similarly for the other $a_i$.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top