MHB Principal Ideal Rings and GCDs .... .... Bland Proposition 4.3.3

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.3: Modules Over Principal Ideal Domains ... and I need some help to fully understand the proof of part of Proposition 4.3.3 ... ...

Proposition 4.3.3 reads as follows:View attachment 8247
View attachment 8248
In the above proof by Bland we read the following:

"... ... If $$(d) = a_1 R + a_2 R + \ ... \ ... \ + a_n R$$, then each $$a_i$$ is in $$(d)$$ ... ... "Can someone please explain how $$(d) = a_1 R + a_2 R + \ ... \ ... \ + a_n R$$ implies each $$a_i$$ is in $$(d)$$ ... ..Peter
 
Physics news on Phys.org
Hi Peter,
$$a_1 = a_1\cdot 1 + a_2 \cdot 0 + \cdots + a_n \cdot 0 \in (d)$$ and similarly for the other $a_i$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K