Principle of inclusion-exclusion proof

1. Sep 16, 2011

mottov2

There are 3 events A,B and C prove that

P(A$\cup$B$\cup$C) = P(A)+P(B)+P(C)-P(A$\cap$B)-P(A$\cap$C)-P(B$\cap$C)+P(A$\cap$B$\cap$C)
each event is disjoint so by the additivity rule....

My attempt:
A$\cup$B$\cup$C = (A$\cap$B$\cap$C)$\cup$(A$\cap$[A$\cap$B$\cap$C]c)$\cup$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)$\cup$(C$\cap$Ac$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c)$\cup$(B$\cap$Ac$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c)

each event is disjoint so by the additivity rule....
P(A$\cup$B$\cup$C) = P(A$\cap$B$\cap$C)+P(A$\cap$[A$\cap$B$\cap$C]c)+P([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)+P(C$\cap$Ac$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c)+P(B$\cap$Ac$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c)

P(A$\cap$(A$\cap$B$\cap$C)c) = P(A)-P(A$\cap$B$\cap$C)
P((B$\cap$C)$\cap$(A$\cap$B$\cap$C)c) = P(B$\cap$C)-P(A$\cap$B$\cap$C)
P(C$\cap$Ac$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c) = P(C$\cap$(A$\cap$C)c$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c) = P(C)-P(A$\cap$C)-P((B$\cap$C)$\cap$(A$\cap$B$\cap$C)c) = P(C)-P(A$\cap$C)-P(B$\cap$C)+P(A$\cap$B$\cap$C)
P(B$\cap$Ac$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c) = P(B$\cap$(A$\cap$B)c$\cap$([B$\cap$C]$\cap$[A$\cap$B$\cap$C]c)c) = P(B)-P(A$\cap$B)-P((B$\cap$C)$\cap$(A$\cap$B$\cap$C)c) = P(B)-P(A$\cap$B)-P(B$\cap$C)+P(A$\cap$B$\cap$C)

then by substitution...

P(A$\cup$B$\cup$C) = P(A$\cap$B$\cap$C)+P(A)-P(A$\cap$B$\cap$C)+P(B$\cap$C)-P(A$\cap$B$\cap$C)+P(C)-P(A$\cap$C)-P(B$\cap$C)+P(A$\cap$B$\cap$C)+P(B)-P(A$\cap$B)-P(B$\cap$C)+P(A$\cap$B$\cap$C)
= P(A)+P(B)+P(C)-P(A$\cap$C)-P(A$\cap$B)-P(B$\cap$C)+P(A$\cap$B$\cap$C)

did i do this right? I feel like i may have overcomplicated it..

Last edited: Sep 16, 2011
2. Sep 16, 2011

Stephen Tashi

You haven't explained what laws of probability can be assumed in order to prove the result and you didn't say which laws you used. Putting a 'P' in front of each set in an expression is not "substitution".

3. Oct 9, 2011

M-quest

Proof By Induction is a lot more elegant,but you have to be careful of your notation