Probabilities and random variables

Click For Summary

Homework Help Overview

The discussion revolves around calculating probabilities related to two sicknesses, "Sa" and "Sb", within a society. The original poster presents a problem involving the calculation of probabilities P(A), P(B), and P(A∩B), as well as the distribution of a random variable X representing the number of individuals with both sicknesses among a sample of ten people.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss different methods for calculating the probabilities, including the use of a probability tree and binomial coefficients. There are questions about the accuracy of these methods and the implications of assuming a population size.

Discussion Status

The conversation includes various perspectives on the methods employed, with some participants suggesting that the binomial distribution may be a simpler approach for large populations. There is acknowledgment of the complexity involved in the calculations and a recognition that further elaboration on the binomial distribution may be necessary.

Contextual Notes

Participants note that the binomial distribution formula has not been covered in class, which may limit some contributors' ability to engage fully with the problem. There is also a mention of the challenges faced by those new to the topic of probabilities.

Mohamed BOUCHAKOUR
Messages
15
Reaction score
0

Homework Statement


In a given society, 15% of people have the sickness "Sa" , from them 20% have the sickness "Sb".
And from those that don't have the sickness "Sa", 5% have the sickness "Sb"
1-We randomly choose a person. and we define:
A:"the person having Sa"
B:"the person having Sb"

-Calculate: P(A) , P(B) and P(A∩B)

2-We take 10 persons from this society. We define X as the random variable that equals to the number of people having the sickness A and B at the same time.
-give the possible values of X, and the probability of them happening.

The first one is pretty easy, need some help with the second.

Homework Equations


Results of the first question:
P(A∩B)=3%
P(A)=15%
P(B)=725/10000

The Attempt at a Solution


X can take any value between 0 and 10.
I tried two things:
1- using the probability tree:
-P(X=0)=(1-P(A∩B))10≈0.73
-P(X=1)=10*P(A∩B)*(1-P(A∩B))9=0.22
But then it gets a bit too complicated to know how many times it's repeated.

2- We suppose that this society consists of 1000 people, so 30 of the will have both Sa and Sb:
-P(X=0)=C10970/C101000=0.73
-P(X=1)=(C130*C9970)/C101000=0.22
.
.
.
.

I think both are correct, but the first is way too complicated for the bigger ones.
And is there another method to avoid the supposition about the number of people in the society.
 
Physics news on Phys.org
Mohamed BOUCHAKOUR said:

Homework Statement


In a given society, 15% of people have the sickness "Sa" , from them 20% have the sickness "Sb".
And from those that don't have the sickness "Sa", 5% have the sickness "Sb"
1-We randomly choose a person. and we define:
A:"the person having Sa"
B:"the person having Sb"

-Calculate: P(A) , P(B) and P(A∩B)

2-We take 10 persons from this society. We define X as the random variable that equals to the number of people having the sickness A and B at the same time.
-give the possible values of X, and the probability of them happening.

The first one is pretty easy, need some help with the second.

Homework Equations


Results of the first question:
P(A∩B)=3%
P(A)=15%
P(B)=725/10000

The Attempt at a Solution


X can take any value between 0 and 10.
I tried two things:
1- using the probability tree:
-P(X=0)=(1-P(A∩B))10≈0.73
-P(X=1)=10*P(A∩B)*(1-P(A∩B))9=0.22
But then it gets a bit too complicated to know how many times it's repeated.

2- We suppose that this society consists of 1000 people, so 30 of the will have both Sa and Sb:
-P(X=0)=C10970/C101000=0.73
-P(X=1)=(C130*C9970)/C101000=0.22
.
.
.
.

I think both are correct, but the first is way too complicated for the bigger ones.
And is there another method to avoid the supposition about the number of people in the society.

No, they are not both correct. In principle, the second way is likely more accurate, but the details depend on the exact size of the whole population. (Furthermore, if anything, it is more complicated to calculate than the first way.) However, we are saved by the fact that for large populations both ways give almost identical results. In other words, for large populations, the hypergeometric distribution (the second way) becomes essentially indistinguishable from the much simpler binomial distribution (the first way).

For the binomial case you can easily use a calculator (or a spreadsheet, or an on-line calculator) to give a complete table of probability values P(N=n) for n = 0,1,2, ... , 10. Furthermore, you can do it recursively: from P(N=0) you can do some simple multiplications to get P(N=1). From P(N=1) it is a simple matter of some multiplications to get to P(N=2), etc. It really is NOT that complicated, especially if you think it through first.
 
  • Like
Likes   Reactions: Mohamed BOUCHAKOUR
I agree with Ray, and:

I would expect that the giving the full expression for the biomial distribution constitutes a valid answer for this exercise ?
 
BvU said:
I agree with Ray, and:

I would expect that the giving the full expression for the biomial distribution constitutes a valid answer for this exercise ?

Probably not, since we didn't go over the Binomial Distribution Formula in class, it would be better to elaborate more.
 
Ray Vickson said:
No, they are not both correct. In principle, the second way is likely more accurate, but the details depend on the exact size of the whole population. (Furthermore, if anything, it is more complicated to calculate than the first way.) However, we are saved by the fact that for large populations both ways give almost identical results. In other words, for large populations, the hypergeometric distribution (the second way) becomes essentially indistinguishable from the much simpler binomial distribution (the first way).
Didn't think about it this way, I'm just starting with probabilities, so I didn't know most of this, but you lead me to do some research in google, thanks for that :wink:

Ray Vickson said:
For the binomial case you can easily use a calculator (or a spreadsheet, or an on-line calculator) to give a complete table of probability values P(N=n) for n = 0,1,2, ... , 10. Furthermore, you can do it recursively: from P(N=0) you can do some simple multiplications to get P(N=1). From P(N=1) it is a simple matter of some multiplications to get to P(N=2), etc. It really is NOT that complicated, especially if you think it through first.

Since i didn't know the Binomial Distribution Formula (didn't go over it in class), the only think i had was probability tree.
And thanks to my stupidity, I didn't think of a way to find how many ways there is to choose in each case (except guessing) (this is why i said "complicated").
 
Mohamed BOUCHAKOUR said:
Didn't think about it this way, I'm just starting with probabilities, so I didn't know most of this, but you lead me to do some research in google, thanks for that :wink:
Since i didn't know the Binomial Distribution Formula (didn't go over it in class), the only think i had was probability tree.
And thanks to my stupidity, I didn't think of a way to find how many ways there is to choose in each case (except guessing) (this is why i said "complicated").

You were starting out writing down the first two probabilities, but then gave up. You say it became "too complicated", but then went on to write formulas like ##C^{30}_1 C^{970}_9 /C^{1000}_{10},## etc., and that is way more complicated than what you would get in the first way. You obviously know about binomial coefficients ##C^n_m,## so you know about the needed tools.

Anyway, you should get in the habit of shortening what you write, by using sensible notation. For example, you could say "let ##p = P(A \cap B) = 0.03## and ##q = 1-p = 0.97##". Then ##P(N=0) = p^{10}, P(N=1) = 10\, p^9 q,## etc. Writing ##P(A \cap B)## over and over again really is a waste of time, and is also much harder to read.
 
Last edited:

Similar threads

Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
7
Views
2K
Replies
4
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K