MHB Probability Challenge: Jason's 2010 Coin Flips

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Jason has a coin which will come up the same as the last flip $\dfrac{2}{3}$ of the time and the other side $\dfrac{1}{3}$ of the time. He flips it and it comes up heads. He then flips it 2010 more times. What is the probability that the last flip is heads?
 
Mathematics news on Phys.org
anemone said:
Jason has a coin which will come up the same as the last flip $\dfrac{2}{3}$ of the time and the other side $\dfrac{1}{3}$ of the time. He flips it and it comes up heads. He then flips it 2010 more times. What is the probability that the last flip is heads?

[sp]It's a simple Markov chain problem and the transition matrix is...

$\displaystyle A = \left | \begin{matrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{matrix} \right |\ (1) $

The solution is the term of first line and first column of $ A^{n}$ for n=2010. This term is the solution of the difference equation...

$\displaystyle a_{n+1} = \frac{a_{n}}{3} + \frac{1}{3}\ a_{1}= \frac{2}{3}\ (2)$

... which is...

$\displaystyle a_{n} = \frac {1 + 3^{- n}}{2}\ (3)$

The requested value is therefore $P = \frac{1 + 3^{- 2010}}{2}$, very close to $\frac{1}{2}$ of course (Wink)...[/sp]

Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]It's a simple Markov chain problem and the transition matrix is...

$\displaystyle A = \left | \begin{matrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{matrix} \right |\ (1) $

The solution is the term of first line and first column of $ A^{n}$ for n=2010. This term is the solution of the difference equation...

$\displaystyle a_{n+1} = \frac{a_{n}}{3} + \frac{1}{3}\ a_{1}= \frac{2}{3}\ (2)$

... which is...

$\displaystyle a_{n} = \frac {1 + 3^{- n}}{2}\ (3)$

The requested value is therefore $P = \frac{1 + 3^{- 2010}}{2}$, very close to $\frac{1}{2}$ of course (Wink)...[/sp]

Kind regards

$\chi$ $\sigma$

Well done, chisigma, well done!:cool:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top