1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Probability current density in E.M. field

  1. Sep 17, 2015 #1

    aa

    User Avatar

    Derive the probability current density for a particle
    in an electromagnetic field.

    (I previously posted this on StackExchange. Please pardon,
    but I have been spending a lot of time on this and if anyone
    knows exactly what the subtle trick involved is, I
    would really appreciate it.)

    http://physics.stackexchange.com/qu...lity-current-density-factors-of-2-discrepancy

    Timaeus at StackExchange said that I need to be less
    cavalier with moving operators around (since everything is
    technically an operator and operators do not commute in
    general). Yet after trying to be more rigorous
    about preserving order, it still doesn't work for me.

    We begin:

    [tex]\dfrac{\partial \rho}{\partial t}
    =
    \dfrac{\partial}{\partial t} (\Psi^* \Psi)
    =
    \dfrac{\partial \Psi^*}{\partial t} \Psi
    +
    \Psi^* \dfrac{\partial \Psi}{\partial t}[/tex]

    H is, if we substitute in [itex]-i\hbar \nabla[/itex] for [itex]\vec{p}[/itex]:

    [tex]H = \frac{1}{2m}(\vec{p} - \frac{q}{c} \mathbf{A}) \cdot
    (\vec{p} - \frac{q}{c} \mathbf{A}) + q\phi \\
    = \frac{1}{2m}(-i\hbar \nabla - \frac{q}{c} \mathbf{A}) \cdot
    (-i\hbar \nabla - \frac{q}{c} \mathbf{A}) + q\phi \\
    = \frac{1}{2m}(i\hbar \nabla + \frac{q}{c} \mathbf{A}) \cdot
    (i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi[/tex]

    Schrödinger equation and its complex conjugate:

    [tex]\dfrac {\partial \Psi}{\partial t} = \dfrac{H\Psi}{i\hbar}[/tex]

    [tex]\dfrac {\partial \Psi^*}{\partial t} = \dfrac{(H \Psi)^*}{-i\hbar}[/tex]

    Substitute in:

    [tex]\dfrac {\partial \rho}{\partial t}
    =
    \dfrac{-1}{i\hbar} [(H\Psi)^* \Psi - \Psi^* (H\Psi)][/tex]

    Substitute in H:

    [tex]\dfrac {\partial \rho}{\partial t}
    = \dfrac{-1}{i\hbar}
    \{ ( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})
    \cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi]\Psi )^* \Psi \\
    - \Psi^*( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})
    \cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi] \Psi)
    \}[/tex]

    Apply complex conjugate:

    [tex]\dfrac {\partial \rho}{\partial t}
    =\dfrac{-1}{i\hbar}
    \{ ( [\frac{1}{2m}(-i\hbar \nabla + \frac{q}{c} \mathbf{A})
    \cdot (-i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi]\Psi^* ) \Psi \\
    - \Psi^*( [\frac{1}{2m}(+i\hbar \nabla + \frac{q}{c} \mathbf{A})
    \cdot (+i\hbar \nabla + \frac{q}{c} \mathbf{A}) + q\phi] \Psi)
    \}[/tex]

    FOIL:

    [tex]\dfrac {\partial \rho}{\partial t}=\dfrac{-1}{i\hbar}
    \{ ( [\frac{1}{2m}(i\hbar i\hbar \nabla^2 + (-i\hbar) \nabla \cdot (\frac{q}{c} \mathbf{A})
    + (\frac{q}{c} \mathbf{A}) \cdot (-i\hbar) \nabla + \frac{q^2}{c^2} \mathbf{A}^2)
    + q\phi]\Psi^* ) \Psi \\
    - \Psi^*( [\frac{1}{2m}(i\hbar i\hbar \nabla^2 + i\hbar \nabla \cdot (\frac{q}{c} \mathbf{A})
    + (\frac{q}{c} \mathbf{A}) \cdot (i\hbar \nabla) + \frac{q^2}{c^2} \mathbf{A}^2)
    + q\phi] \Psi)
    \}[/tex]

    Multiply everything out:

    [tex]\dfrac {\partial \rho}{\partial t}
    =\frac{-i\hbar}{2m}(\nabla^2 \Psi^*) \Psi
    + \frac{1}{2m} (\nabla \cdot \frac{q}{c} \mathbf{A}) \Psi^* \Psi
    + \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi^*) \Psi
    + \frac{-1}{i\hbar} \frac{1}{2m} \frac{q^2}{c^2} \mathbf{A}^2 \Psi^* \Psi \\
    + \frac{-1}{i\hbar} \frac{1}{2m} q \phi \Psi^* \Psi \\
    + (\Psi^*) \frac{1}{2m} (i\hbar)(\nabla^2 \Psi)
    + (\Psi^*) \frac{1}{2m} \nabla \cdot (\frac{q}{c} \mathbf{A}) \Psi
    + (\Psi^*) \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi)
    + \frac{1}{i\hbar} (\Psi^*) \frac{1}{2m} \frac{q^2}{c^2} \mathbf{A}^2 \Psi \\
    + \frac{1}{i\hbar} \frac{1}{2m}(\Psi^*)q\phi \Psi
    [/tex]

    The terms containing [itex]\phi[/itex] and [itex]\frac{q^2}{c^2} \mathbf{A}^2[/itex]
    cancel and there's a fact that [itex]\Psi \nabla^2 \Psi^* - \Psi^* \nabla^2 \Psi
    = \nabla \cdot(\Psi \nabla \Psi^* - \Psi^* \nabla \Psi)[/itex], so

    [tex]\dfrac {\partial \rho}{\partial t}
    = \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\
    + \frac{1}{2m} (\nabla \cdot \frac{q}{c} \mathbf{A}) \Psi^* \Psi
    + \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi^*) \Psi
    + (\Psi^*) \frac{1}{2m} \nabla \cdot (\frac{q}{c} \mathbf{A}) \Psi
    + (\Psi^*) \frac{1}{2m} (\frac{q}{c} \mathbf{A}) \cdot (\nabla \Psi)[/tex]

    Note that of the 5 terms, the 2nd and 4th are the same, so

    (1) [tex]\dfrac {\partial \rho}{\partial t}
    = \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\
    + \dfrac{q}{mc} (\nabla \cdot \mathbf{A}) \Psi^* \Psi
    + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
    + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)[/tex]

    https://en.wikipedia.org/wiki/Probability_current tells us
    that the final result should be [itex]\dfrac{\partial \rho}{\partial t}
    = - \nabla \cdot \mathbf{j}[/itex] and that

    [tex]\mathbf{j} = \dfrac{1}{2m} [(\Psi^* \mathbf{\hat{p}} \Psi
    - \Psi \mathbf{\hat{p}} \Psi^* ) - 2 \frac{q}{c} \mathbf{A} |\Psi|^2][/tex]

    or using [itex]\mathbf{\hat{p}} = -i\hbar \nabla[/itex],

    [tex]\mathbf{j} = \dfrac{1}{2m} [(\Psi^* (-i\hbar \nabla) \Psi
    - \Psi (-i\hbar \nabla) \Psi^* ) - 2 \frac{q}{c} \mathbf{A} |\Psi|^2][/tex]

    [tex]\mathbf{j} = \dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* ) - \dfrac{1}{2m} 2 \frac{q}{c} \mathbf{A} |\Psi|^2[/tex]

    [tex]\mathbf{j} = \dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* ) - \dfrac{q}{mc} \mathbf{A} |\Psi|^2[/tex]

    Applying [itex]\dfrac{\partial \rho}{\partial t} = - \nabla \cdot \mathbf{j}[/itex],

    [tex]\dfrac{\partial \rho}{\partial t}
    = - \nabla \cdot [\dfrac{-i\hbar}{2m} (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* ) - \dfrac{q}{mc} \mathbf{A} |\Psi|^2][/tex]

    [tex]\dfrac{\partial \rho}{\partial t}
    = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* ) + \dfrac{q}{mc} \nabla \cdot
    (\mathbf{A} |\Psi|^2)[/tex]

    Apply an identity about [itex]\nabla[/itex] operating on a scalar times a vector
    at https://en.wikipedia.org/wiki/Vector_calculus_identities
    [itex]\nabla \cdot (\phi \mathbf{B}) =
    \mathbf{B} \cdot \nabla \phi +
    \phi (\nabla \cdot \mathbf{B})[/itex] (I changed the letters),

    [tex]\dfrac{\partial \rho}{\partial t}
    = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* )
    + \dfrac{q}{mc} (\mathbf{A} \cdot \nabla (\Psi^* \Psi)
    + (\Psi^* \Psi) (\nabla \cdot \mathbf{A}))[/tex]

    Product rule:

    [tex]\dfrac{\partial \rho}{\partial t}
    = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* )
    + \dfrac{q}{mc} (\mathbf{A} \cdot (\Psi^* \nabla \Psi)
    + \mathbf{A} \cdot (\Psi \nabla \Psi^*)
    + (\Psi^* \Psi) (\nabla \cdot \mathbf{A}))[/tex]

    [tex]\dfrac{\partial \rho}{\partial t}
    = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* )
    + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)
    + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
    + \dfrac{q}{mc} (\Psi^* \Psi) (\nabla \cdot \mathbf{A})[/tex]

    Rearrange some terms so that we can compare with equation (1):

    [tex]\dfrac{\partial \rho}{\partial t}
    = \dfrac{i\hbar}{2m} \nabla \cdot (\Psi^* \nabla \Psi
    - \Psi \nabla \Psi^* )
    + \dfrac{q}{mc} (\Psi^* \Psi) (\nabla \cdot \mathbf{A})
    + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
    + \dfrac{q}{mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)[/tex]

    Now we're very close to equation (1),

    (1) [tex]\dfrac {\partial \rho}{\partial t}
    = \frac{-i\hbar}{2m} \nabla \cdot (\Psi \nabla \Psi^* - \Psi^* \nabla \Psi) \\
    + \dfrac{q}{mc} (\nabla \cdot \mathbf{A}) \Psi^* \Psi
    + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi \nabla \Psi^*)
    + \dfrac{q}{2mc} \mathbf{A} \cdot (\Psi^* \nabla \Psi)[/tex]

    but are off by some factors of 2.
    Do you see the error in my steps?
     
  2. jcsd
  3. Sep 17, 2015 #2

    TSny

    User Avatar
    Homework Helper
    Gold Member

    In your "FOIL" step (see below), think about whether or not the Del operator circled in red should operate on ##\Psi^{*}## as well as ##\mathbf{A}##.
     

    Attached Files:

  4. Sep 18, 2015 #3

    aa

    User Avatar

    It works! "Incorporating the [itex]\Psi[/itex] and [itex]\Psi^*[/itex] first", before doing
    the [itex]\nabla[/itex], creates a "6th term", that fills in the missing piece(s).
    THANK YOU TSny!!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Probability current density in E.M. field
Loading...