- #1

Sekonda

- 207

- 0

I'm trying to determine the probability density and current of the Dirac equation by comparison to the general continuity equation. The form of the Dirac equation I have is

[tex]i\frac{\partial \psi}{\partial t}=(-i\underline{\alpha}\cdot\underline{\nabla}+\beta m)\psi[/tex]

According to my notes I am supposed to determine the following sum to make the relevant comparisons to the continuity equation and therefore determine the probability density/current

[tex]\psi(Dirac)^{\dagger}+\psi^{\dagger}(Dirac)[/tex]

Where 'Dirac' refers to the above equation. However I have tried this and I can only get it to work if I multiply one term by 'i' and the other by '-i' in the above.

[tex]\psi(i\frac{\partial \psi}{\partial t})^{\dagger}+\psi^{\dagger}(i\frac{\partial \psi}{\partial t})=-i\psi\frac{\partial \psi^{*}}{\partial t}+i\psi^{*}\frac{\partial \psi}{\partial t}\neq i\frac{\partial (\psi^{*}\psi)}{\partial t}[/tex]

Any help is appreciated!

Thanks,

SK