A Probability distributions in an ordered set of extracted elements

Click For Summary
The discussion centers on determining the probability distribution function for the i-th position of an ordered set of n elements extracted from a set S with a total order relation R. The original poster seeks existing solutions or literature on this specific probability problem, noting difficulty in finding relevant resources. A suggestion is made to approach the problem by counting the combinations of elements smaller and larger than the x-th element in the ordered set. Participants encourage exploring the problem further, indicating that it may not be overly complex. The conversation emphasizes the need for mathematical exploration and potential solutions in combinatorial probability.
jazzy
Messages
1
Reaction score
0
TL;DR
Finding the probability distributions in an ordered set of random extracted elements
Hello, I tried looking for an existing solution for the following problem:
"Assume that S is a set of d elements, and R is a total order relation on S. Assume that n elements are randomly extracted from S, and then they are ordered according to R. Which is the probability that in the i-th position of the ordered set of n elements there is the x-th element of S? (where the x-th element of S is intended according to the R).

In other words, which is the probability distribution function for the i-th position of the ordered set of n elements? Do you know whether such problem has already been solved? I did not find any specific solution in literature or elsewhere. I tried do find my own solution, but I would like to know if something already exist.
 
Physics news on Phys.org
I don't think this is that hard. To get the xth element of R in the ith position, you need to pick x-1 elements smaller than it, and n-x-1 elements larger than it. You can just count the number of ways to do this. Why don't you give it a shot?
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

Replies
16
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K