I Probability fun time: Proof that 1/3=1/2=1/4

AI Thread Summary
The discussion explores the concept of probability using concentric circles to illustrate how different coordinate systems can yield varying probabilities for the same scenario. When selecting a point randomly in a larger circle, the probability of it falling within a smaller circle can be calculated as 1/4 using Cartesian coordinates. However, when polar coordinates are applied, the probability changes to 1/2 due to the uniform distribution in angle and the squared radial distance. This highlights the importance of the chosen coordinate system in probability calculations. The findings emphasize that the interpretation of probability can vary significantly based on the method used for selection.
Frabjous
Gold Member
Messages
1,952
Reaction score
2,382
Forgive me, I am not a probability guy, so I am unsure how well known this is. I was trying to figure something out and found this. I found it cool.

Screen Shot 2021-04-02 at 5.48.46 AM.png
Screen Shot 2021-04-02 at 5.49.32 AM.png


Here's the explanation.

Screen Shot 2021-04-02 at 5.49.48 AM.png

The first solution is a fraction (damn scanner!)

Oops! From Kendall Geometrical Probability (1963)
 
Last edited:
Mathematics news on Phys.org
The basic idea is reasonably well-known. For example, if we have two concentric circles of radii ##1## and ##2## and we pick a point "at random" in the larger circle, what is the probability it is in the smaller circle?

If we choose Cartesian coordinates uniformly, then the probablity is ##1/4##. But, if we choose polar coordinates, then the probability is ##1/2##.
 
When you use polar coordinates, the correct was (equal area) is uniform in angle and uniform in ##r^2## (not in ##r##).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top