Undergrad Probability fun time: Proof that 1/3=1/2=1/4

Click For Summary
The discussion explores the concept of probability using concentric circles to illustrate how different coordinate systems can yield varying probabilities for the same scenario. When selecting a point randomly in a larger circle, the probability of it falling within a smaller circle can be calculated as 1/4 using Cartesian coordinates. However, when polar coordinates are applied, the probability changes to 1/2 due to the uniform distribution in angle and the squared radial distance. This highlights the importance of the chosen coordinate system in probability calculations. The findings emphasize that the interpretation of probability can vary significantly based on the method used for selection.
Frabjous
Gold Member
Messages
1,958
Reaction score
2,395
Forgive me, I am not a probability guy, so I am unsure how well known this is. I was trying to figure something out and found this. I found it cool.

Screen Shot 2021-04-02 at 5.48.46 AM.png
Screen Shot 2021-04-02 at 5.49.32 AM.png


Here's the explanation.

Screen Shot 2021-04-02 at 5.49.48 AM.png

The first solution is a fraction (damn scanner!)

Oops! From Kendall Geometrical Probability (1963)
 
Last edited:
Mathematics news on Phys.org
The basic idea is reasonably well-known. For example, if we have two concentric circles of radii ##1## and ##2## and we pick a point "at random" in the larger circle, what is the probability it is in the smaller circle?

If we choose Cartesian coordinates uniformly, then the probablity is ##1/4##. But, if we choose polar coordinates, then the probability is ##1/2##.
 
When you use polar coordinates, the correct was (equal area) is uniform in angle and uniform in ##r^2## (not in ##r##).
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 55 ·
2
Replies
55
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K