MHB Probability of 3 people ending up on same team?

  • Thread starter Thread starter steve212
  • Start date Start date
  • Tags Tags
    Probability
steve212
Messages
3
Reaction score
0
There are 20 people and we are forming 2 teams of 10 people. 3 of the people (3/20) are women, 17 (17/20) are men. Names are drawn from random, in alternating order for teams. What is the probability that all 3 women end up on the same team?

Initially I thought it was 25%. 100% probability for 1st woman and 50% for each of remaining 2, so .5*.5 = .25

Then I thought it was 17 choose 10 / 20 choose 10 = 0.105
or possibility 2*0.105 (accounting for 0 women on same team as equal probability)

any help!?
 
Mathematics news on Phys.org
I think your second method is correct. Suppose we call the teams $X$ and $Y$...and now we need only look at one team, so let's look at team $X$. If there are to be 3 women on the same team, which we'll call event $A$, then that will happen if team $X$ gets zero women (in which case team $Y$ has three women) OR if team $X$ gets three women. So, I would state:

$$P(A)=\frac{{17 \choose 10}{3 \choose 0}}{{20 \choose 10}}+\frac{{17 \choose 7}{3 \choose 3}}{{20 \choose 10}}=\frac{4}{19}$$
 
Thanks! If I change the size of the team to 1000 (keeping the ratio of W:M the same) the result is 0.245 - very close to the 0.25 I also thought - is there a rule that explains why this is for large numbers?

MarkFL said:
I think your second method is correct. Suppose we call the teams $X$ and $Y$...and now we need only look at one team, so let's look at team $X$. If there are to be 3 women on the same team, which we'll call event $A$, then that will happen if team $X$ gets zero women (in which case team $Y$ has three women) OR if team $X$ gets three women. So, I would state:

$$P(A)=\frac{{17 \choose 10}{3 \choose 0}}{{20 \choose 10}}+\frac{{17 \choose 7}{3 \choose 3}}{{20 \choose 10}}=\frac{4}{19}$$
 
steve212 said:
Thanks! If I change the size of the team to 1000 (keeping the ratio of W:M the same) the result is 0.245 - very close to the 0.25 I also thought - is there a rule that explains why this is for large numbers?

If we have 2000 people, 300 of which are women, then the probability that all 300 women will be on the same team is given by:

$$P(A)=\frac{{1700 \choose 1000}{300 \choose 0}}{{2000 \choose 1000}}+\frac{{1700 \choose 700}{300 \choose 300}}{{2000 \choose 1000}}\approx 3.00417429967\,\times\,10^{-102}$$
 
MarkFL said:
I think your second method is correct.

I concur.

$$P(A)=2\cdot\frac{10\choose3}{20\choose3}=\frac{4}{19}$$

This method also gives the same result for your second example.
 
Sorry that wasn't exactly clear - I meant 2000 people of which 3 are women and 1997 are men, p~=0.25
MarkFL said:
If we have 2000 people, 300 of which are women, then the probability that all 300 women will be on the same team is given by:

$$P(A)=\frac{{1700 \choose 1000}{300 \choose 0}}{{2000 \choose 1000}}+\frac{{1700 \choose 700}{300 \choose 300}}{{2000 \choose 1000}}\approx 3.00417429967\,\times\,10^{-102}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top