Probability of 3 people ending up on same team?

  • Context: MHB 
  • Thread starter Thread starter steve212
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The probability that all 3 women end up on the same team when forming 2 teams of 10 from a group of 20 people (3 women and 17 men) is calculated using combinatorial methods. The correct probability is given by the formula: $$P(A)=\frac{{17 \choose 10}{3 \choose 0}}{{20 \choose 10}}+\frac{{17 \choose 7}{3 \choose 3}}{{20 \choose 10}}=\frac{4}{19}$$. This approach can be generalized for larger groups, maintaining the same gender ratio, yielding similar probabilities. For instance, with 2000 people and 300 women, the probability approaches zero, demonstrating the impact of larger sample sizes on outcomes.

PREREQUISITES
  • Understanding of combinatorial mathematics, specifically binomial coefficients.
  • Familiarity with probability theory and events.
  • Knowledge of basic statistical concepts related to sampling.
  • Ability to interpret mathematical expressions and formulas.
NEXT STEPS
  • Study combinatorial probability and its applications in team formation scenarios.
  • Learn about binomial coefficients and their calculations in depth.
  • Explore the implications of large sample sizes on probability distributions.
  • Investigate similar probability problems involving different group compositions and sizes.
USEFUL FOR

Mathematicians, statisticians, educators, and anyone interested in probability theory and combinatorial analysis, particularly in team dynamics and gender distribution scenarios.

steve212
Messages
3
Reaction score
0
There are 20 people and we are forming 2 teams of 10 people. 3 of the people (3/20) are women, 17 (17/20) are men. Names are drawn from random, in alternating order for teams. What is the probability that all 3 women end up on the same team?

Initially I thought it was 25%. 100% probability for 1st woman and 50% for each of remaining 2, so .5*.5 = .25

Then I thought it was 17 choose 10 / 20 choose 10 = 0.105
or possibility 2*0.105 (accounting for 0 women on same team as equal probability)

any help!?
 
Physics news on Phys.org
I think your second method is correct. Suppose we call the teams $X$ and $Y$...and now we need only look at one team, so let's look at team $X$. If there are to be 3 women on the same team, which we'll call event $A$, then that will happen if team $X$ gets zero women (in which case team $Y$ has three women) OR if team $X$ gets three women. So, I would state:

$$P(A)=\frac{{17 \choose 10}{3 \choose 0}}{{20 \choose 10}}+\frac{{17 \choose 7}{3 \choose 3}}{{20 \choose 10}}=\frac{4}{19}$$
 
Thanks! If I change the size of the team to 1000 (keeping the ratio of W:M the same) the result is 0.245 - very close to the 0.25 I also thought - is there a rule that explains why this is for large numbers?

MarkFL said:
I think your second method is correct. Suppose we call the teams $X$ and $Y$...and now we need only look at one team, so let's look at team $X$. If there are to be 3 women on the same team, which we'll call event $A$, then that will happen if team $X$ gets zero women (in which case team $Y$ has three women) OR if team $X$ gets three women. So, I would state:

$$P(A)=\frac{{17 \choose 10}{3 \choose 0}}{{20 \choose 10}}+\frac{{17 \choose 7}{3 \choose 3}}{{20 \choose 10}}=\frac{4}{19}$$
 
steve212 said:
Thanks! If I change the size of the team to 1000 (keeping the ratio of W:M the same) the result is 0.245 - very close to the 0.25 I also thought - is there a rule that explains why this is for large numbers?

If we have 2000 people, 300 of which are women, then the probability that all 300 women will be on the same team is given by:

$$P(A)=\frac{{1700 \choose 1000}{300 \choose 0}}{{2000 \choose 1000}}+\frac{{1700 \choose 700}{300 \choose 300}}{{2000 \choose 1000}}\approx 3.00417429967\,\times\,10^{-102}$$
 
MarkFL said:
I think your second method is correct.

I concur.

$$P(A)=2\cdot\frac{10\choose3}{20\choose3}=\frac{4}{19}$$

This method also gives the same result for your second example.
 
Sorry that wasn't exactly clear - I meant 2000 people of which 3 are women and 1997 are men, p~=0.25
MarkFL said:
If we have 2000 people, 300 of which are women, then the probability that all 300 women will be on the same team is given by:

$$P(A)=\frac{{1700 \choose 1000}{300 \choose 0}}{{2000 \choose 1000}}+\frac{{1700 \choose 700}{300 \choose 300}}{{2000 \choose 1000}}\approx 3.00417429967\,\times\,10^{-102}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
6K