MHB Probability that all N_Q packets arrived in [0,t], in a Poisson process

Click For Summary
In a Poisson process with arrival parameter λ, the discussion focuses on calculating the probability that all N_Q packets arrived in the interval [0,t] given that a tagged packet arrives at time t, which is uniformly distributed in [0, T]. The initial approach uses the conditional probability formula, leading to an expression that incorporates the factorial of N_Q. The challenge is to derive an expression independent of the random variable N_Q. The probability of each packet arriving in the interval is expressed as P{0 < τ < t} = t/T, and for independent arrivals, the overall probability is P_{N_Q} = (t/T)^{N_Q}. The discussion concludes with a consideration of how to simplify the expression for broader applicability.
hemanth
Messages
7
Reaction score
0
Arrivals are Poisson distributed with parameter $$ \lambda$$.
Consider a system, where at the time of arrival of a tagged packet, it sees $$N_Q$$ packets.
Given that the tagged packet arrives at an instant $$t$$, which is uniform in [0, T],
what is the probability that all $$N_Q$$ packets arrived in [0,t]?
This is how i approached.

$$P\{N_Q \text{arrivals happened in} (0,t) |t\}= \frac{(\lambda \tau)^N_Q e^{-\lambda }}{N_Q!}$$
unconditioning on t, we get $$\frac{1}{T} \int _0^{T}\frac{(\lambda t)^N_Q e^{-\lambda t}}{N_Q!}dt$$Here $$N_Q$$ is a random variable in itself.
How do we get the expression independent of $$ N_Q$$?
 
Physics news on Phys.org
hemanth said:
Arrivals are Poisson distributed with parameter $$ \lambda$$.
Consider a system, where at the time of arrival of a tagged packet, it sees $$N_Q$$ packets.
Given that the tagged packet arrives at an instant $$t$$, which is uniform in [0, T],
what is the probability that all $$N_Q$$ packets arrived in [0,t]?
This is how i approached.

$$P\{N_Q \text{arrivals happened in} (0,t) |t\}= \frac{(\lambda \tau)^N_Q e^{-\lambda }}{N_Q!}$$
unconditioning on t, we get $$\frac{1}{T} \int _0^{T}\frac{(\lambda t)^N_Q e^{-\lambda t}}{N_Q!}dt$$Here $$N_Q$$ is a random variable in itself.
How do we get the expression independent of $$ N_Q$$?

The probability that each packet arrives in a time $\displaystyle 0 < \tau < t$ is...

$P \{0 < \tau < t\} = \frac{t}{T}\ (1)$

... and if the arrival times of all pachets are independent then the probability that all the pachets arrive in that time interval is...

$P_{N_{q}} = (\frac{t}{T})^{N_{q}}\ (2)$

Kind regards

$\chi$ $\sigma$
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...