MHB Problem I am stuck on, simplifying radicals in denominator again

AI Thread Summary
The discussion revolves around simplifying radicals in the denominator, specifically the expression (2+√7)/(3-√-11). The user initially struggles with multiplying by the conjugate and correctly identifies that (3 - √-11) can be expressed as (3 - √11i). Key points include the realization that multiplying -√11i by itself yields +11, clarifying a common mistake in handling complex numbers. The conversation emphasizes the formula for simplifying complex fractions, which states that 1/(a+bi) can be transformed into (a-bi)/(a^2+b^2) for easier computation. Overall, the thread provides insights into complex number multiplication and the correct approach to simplifying such expressions.
GrannySmith
Messages
5
Reaction score
0
:mad: I really hate these problems.

(2+√7)/(3-√-11). What the heck?

I start out by multiplying both sides with the conjugate again. This is where I am stuck lol. Can someone tell me what I am doing wrong while multiplying the conjugate?

(3 - √-11) is the same as 3 - √11i correct? So I multiply (3 - √11i) with (3 + √11i). I don't understand how this goes, but I tried.

3 times 3 is 9.

3 times √11i is 3√11i

-√11i times 3 is -3√11i canceling out 3√11i

-√11i times √11i is -11i? A bit confused on how this works and I'm guessing this is where I made a mistake?

On top we have (2+√7)(3 + √11i).

2 times 3 is 6

2 times √11i is 2√11i

√7 times 3 is 3√7

What would √7 times √11i be? √77i? Can you multiply a normal square root with an imaginary square root?
 
Mathematics news on Phys.org
GrannySmith said:
-√11i times √11i is -11i? A bit confused on how this works and I'm guessing this is where I made a mistake?

You guess correctly that this is where you made your mistake...

\displaystyle \begin{align*} -\sqrt{11}i\cdot \sqrt{11}i &= - \left( \sqrt{11} \right) ^2 i^2 \\ &= -11 \left( -1 \right) \\ &= + 11 \end{align*}
 
Good catch, Prove It. I delete my post with incorrect results. This still follows the pattern of $(a-b)(a+b)=(a+b)(a-b)=a^2-b^2$. In this case, $b=i \cdot \sqrt{11}$ thus $-b^2=-i^2(\sqrt{11})^2$, just like you wrote.
 
Prove It said:
You guess correctly that this is where you made your mistake...

\displaystyle \begin{align*} -\sqrt{11}i\cdot \sqrt{11}i &= - \left( \sqrt{11} \right) ^2 i^2 \\ &= -11 \left( -1 \right) \\ &= + 11 \end{align*}

You're awesome! Makes so much sense now.

(-√6i)(-√14i) would be (√84i^2) correct? Then the i^2 would make it -√84? Just want to make sure I fully understand this.
 
GrannySmith said:
You're awesome! Makes so much sense now.

(-√6i)(-√14i) would be (√84i^2) correct? Then the i^2 would make it -√84? Just want to make sure I fully understand this.

Yes, but also remember

\displaystyle \begin{align*} \sqrt{84} &= \sqrt{ 4 \cdot 21 } \\ &= \sqrt{4} \cdot \sqrt{21} \\ &= 2\sqrt{21} \end{align*}
 
Just a quick note:

With two complex numbers $a+bi$ and $a-bi$ their product is:

$(a+bi)(a-bi) = a^2 - a(bi) + (bi)a - (bi)^2$.

Now the terms $-a(bi)$ and $(bi)a = a(bi)$ cancel, leaving us with:

$a^2 - (bi)^2 = a^2 - b^2i^2 = a^2 - b^2(-1) = a^2 + b^2$.

In other words, a SUM of two (real) squares can be viewed as a DIFFERENCE of two complex squares:

$a^2 + b^2 = a^2 - (bi)^2$

This unusual "trick" is what throws most people off, because we are used to thinking of squares as "always positive" (which is true for real numbers, but NOT for complex numbers, where "positive" doesn't really MEAN anything).

In general:

$\dfrac{1}{a+bi} = \dfrac{a-bi}{a^2+b^2}$

this formula is well worth remembering, since it's a real time-saver:

In your example, to compute:

$\dfrac{1}{3 - \sqrt{-11}} = \dfrac{1}{3 - \sqrt{11}i}$

so we can multiply instead of divide (because let's face it, division is a pain in the a-erm, anterior region)

instead of going through the routine of multiplying by the conjugate top and bottom, we do THIS:

$3^2 = 9$ and $(\sqrt{11})^2 = 11$ and $9 + 11 = 20$

so we have:

$\frac{1}{11}(3 + \sqrt{11}i)$

As for your "multiplication" question, it is true that:

$\sqrt{7}(\sqrt{11}i) = (\sqrt{7}\sqrt{11})i = \sqrt{77}i$

because the complex numbers form a FIELD, and this means that multiplication is associative.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top