MHB Problem I am stuck on, simplifying radicals in denominator again

AI Thread Summary
The discussion revolves around simplifying radicals in the denominator, specifically the expression (2+√7)/(3-√-11). The user initially struggles with multiplying by the conjugate and correctly identifies that (3 - √-11) can be expressed as (3 - √11i). Key points include the realization that multiplying -√11i by itself yields +11, clarifying a common mistake in handling complex numbers. The conversation emphasizes the formula for simplifying complex fractions, which states that 1/(a+bi) can be transformed into (a-bi)/(a^2+b^2) for easier computation. Overall, the thread provides insights into complex number multiplication and the correct approach to simplifying such expressions.
GrannySmith
Messages
5
Reaction score
0
:mad: I really hate these problems.

(2+√7)/(3-√-11). What the heck?

I start out by multiplying both sides with the conjugate again. This is where I am stuck lol. Can someone tell me what I am doing wrong while multiplying the conjugate?

(3 - √-11) is the same as 3 - √11i correct? So I multiply (3 - √11i) with (3 + √11i). I don't understand how this goes, but I tried.

3 times 3 is 9.

3 times √11i is 3√11i

-√11i times 3 is -3√11i canceling out 3√11i

-√11i times √11i is -11i? A bit confused on how this works and I'm guessing this is where I made a mistake?

On top we have (2+√7)(3 + √11i).

2 times 3 is 6

2 times √11i is 2√11i

√7 times 3 is 3√7

What would √7 times √11i be? √77i? Can you multiply a normal square root with an imaginary square root?
 
Mathematics news on Phys.org
GrannySmith said:
-√11i times √11i is -11i? A bit confused on how this works and I'm guessing this is where I made a mistake?

You guess correctly that this is where you made your mistake...

\displaystyle \begin{align*} -\sqrt{11}i\cdot \sqrt{11}i &= - \left( \sqrt{11} \right) ^2 i^2 \\ &= -11 \left( -1 \right) \\ &= + 11 \end{align*}
 
Good catch, Prove It. I delete my post with incorrect results. This still follows the pattern of $(a-b)(a+b)=(a+b)(a-b)=a^2-b^2$. In this case, $b=i \cdot \sqrt{11}$ thus $-b^2=-i^2(\sqrt{11})^2$, just like you wrote.
 
Prove It said:
You guess correctly that this is where you made your mistake...

\displaystyle \begin{align*} -\sqrt{11}i\cdot \sqrt{11}i &= - \left( \sqrt{11} \right) ^2 i^2 \\ &= -11 \left( -1 \right) \\ &= + 11 \end{align*}

You're awesome! Makes so much sense now.

(-√6i)(-√14i) would be (√84i^2) correct? Then the i^2 would make it -√84? Just want to make sure I fully understand this.
 
GrannySmith said:
You're awesome! Makes so much sense now.

(-√6i)(-√14i) would be (√84i^2) correct? Then the i^2 would make it -√84? Just want to make sure I fully understand this.

Yes, but also remember

\displaystyle \begin{align*} \sqrt{84} &= \sqrt{ 4 \cdot 21 } \\ &= \sqrt{4} \cdot \sqrt{21} \\ &= 2\sqrt{21} \end{align*}
 
Just a quick note:

With two complex numbers $a+bi$ and $a-bi$ their product is:

$(a+bi)(a-bi) = a^2 - a(bi) + (bi)a - (bi)^2$.

Now the terms $-a(bi)$ and $(bi)a = a(bi)$ cancel, leaving us with:

$a^2 - (bi)^2 = a^2 - b^2i^2 = a^2 - b^2(-1) = a^2 + b^2$.

In other words, a SUM of two (real) squares can be viewed as a DIFFERENCE of two complex squares:

$a^2 + b^2 = a^2 - (bi)^2$

This unusual "trick" is what throws most people off, because we are used to thinking of squares as "always positive" (which is true for real numbers, but NOT for complex numbers, where "positive" doesn't really MEAN anything).

In general:

$\dfrac{1}{a+bi} = \dfrac{a-bi}{a^2+b^2}$

this formula is well worth remembering, since it's a real time-saver:

In your example, to compute:

$\dfrac{1}{3 - \sqrt{-11}} = \dfrac{1}{3 - \sqrt{11}i}$

so we can multiply instead of divide (because let's face it, division is a pain in the a-erm, anterior region)

instead of going through the routine of multiplying by the conjugate top and bottom, we do THIS:

$3^2 = 9$ and $(\sqrt{11})^2 = 11$ and $9 + 11 = 20$

so we have:

$\frac{1}{11}(3 + \sqrt{11}i)$

As for your "multiplication" question, it is true that:

$\sqrt{7}(\sqrt{11}i) = (\sqrt{7}\sqrt{11})i = \sqrt{77}i$

because the complex numbers form a FIELD, and this means that multiplication is associative.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top