Problem of the Week # 198 - January 12, 2016

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
SUMMARY

The discussion centers on Problem of the Week #198, which involves computing the expression $\exp(i\theta \, \vec{v}\cdot\vec{\sigma})$ using the Pauli spin matrices $\sigma_1$, $\sigma_2$, and $\sigma_3$. Participants referenced Exercise 2.35 from "Quantum Computation and Quantum Information" by Nielsen and Chuang. The correct solutions were provided by users kiwi and Opalg, showcasing their understanding of quantum mechanics and matrix exponentiation.

PREREQUISITES
  • Understanding of Pauli spin matrices
  • Familiarity with matrix exponentiation
  • Knowledge of quantum mechanics concepts
  • Ability to manipulate complex numbers
NEXT STEPS
  • Study the properties of Pauli matrices in quantum mechanics
  • Learn about matrix exponentiation techniques in quantum computing
  • Explore the implications of unit vectors in quantum state representation
  • Review Exercise 2.35 in "Quantum Computation and Quantum Information" by Nielsen and Chuang
USEFUL FOR

Students and professionals in quantum mechanics, quantum computing enthusiasts, and anyone interested in advanced mathematical concepts related to quantum states.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let
\begin{align*}
\sigma_1&=\begin{bmatrix}0&1\\1&0\end{bmatrix} \\
\sigma_2&=\begin{bmatrix}0&-i\\i&0\end{bmatrix} \\
\sigma_3&=\begin{bmatrix}1&0\\0&-1\end{bmatrix}
\end{align*}
be the three Pauli spin matrices. Let $\vec{v}$ be a real, three-dimensional unit vector, and let $\theta$ be a real number. Compute $\exp(i\theta \, \vec{v}\cdot\vec{\sigma}),$ where
$$\vec{v}\cdot\vec{\sigma}=\sum_{j=1}^3 v_j \, \sigma_j.$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 198 - January 12, 2016

This is Exercise 2.35 on page 75 of Quantum Computation and Quantum Information, by Nielsen and Chuang.

Congratulations to kiwi and Opalg for their correct answers. kiwi's solution follows:

Let \(\vec{v}=(a,b,c)\) where \(a^2+b^2+c^2=1\) because v is a unit vector.

It is straightforward to verify:
1. \(\sigma_1^2=\sigma_2^2=\sigma_3^2=I\)
2. \(\sigma_1\sigma_2=\sigma_2\sigma_3=\sigma_3\sigma_1=\sigma_2\sigma_1=\sigma_2\sigma_3=\sigma_3\sigma_1=0.I\)

Now \((\vec{v}\cdot\vec{\sigma})^2=(a\sigma_1+b\sigma_2+c\sigma_3)^2\)
\(\therefore(\vec{v}\cdot\vec{\sigma})^2=a^2\sigma_1^2+b^2\sigma_2^2+c^2\sigma_3^2+ab\sigma_1\sigma_2+ba\sigma_2\sigma_1+bc\sigma_2\sigma_3+cb\sigma_3\sigma_2+ca\sigma_3\sigma_1+ac\sigma_1\sigma_3\)
using (1) and (2)
\(\therefore(\vec{v}\cdot\vec{\sigma})^2=(a^2+b^2+c^2)I=I\)
So
3. \((\vec{v}\cdot\vec{\sigma})^{2n}=I\) for any n

Finally using a Taylor expansion:

\(e^{i\theta(\vec{v}\cdot\vec{\sigma})}=\sum_{n=0}^{\inf} \frac{(i)^n[\theta(\vec{v}\cdot\vec{\sigma})]^n}{n!}\)

\(\therefore =\sum_{n=0}^{\inf} \frac{(i)^{2n}[\theta(\vec{v}\cdot\vec{\sigma})]^{2n}}{(2n)!}+\sum_{n=0}^{\inf} \frac{(i)^{2n+1}[\theta(\vec{v}\cdot\vec{\sigma})]^{2n+1}}{(2n+1)!}\)

Using (3) we get:

\(\therefore =\sum_{n=0}^{\inf} I\frac{(-1)^{n}[\theta]^{2n}}{(2n)!}+\sum_{n=0}^{\inf} \frac{i(-1)^{n}[\theta]^{2n+1}(\vec{v}\cdot\vec{\sigma})}{(2n+1)!}\)

\(\therefore =I\sum_{n=0}^{\inf} \frac{(-1)^{n}[\theta]^{2n}}{(2n)!}+i(\vec{v}\cdot\vec{\sigma})\sum_{n=0}^{\inf} \frac{(-1)^{n}[\theta]^{2n+1}}{(2n+1)!}\)

Now recognising the Taylor expansions of cos and sin gives:

\( e^{i\theta(\vec{v}\cdot\vec{\sigma})}=I\cos(\theta)+i(\vec{v}\cdot\vec{\sigma})\sin(\theta)\)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K