MHB Problem of the Week # 198 - January 12, 2016

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The discussion centers on Problem of the Week #198, which involves computing the expression exp(iθ * v·σ) using the Pauli spin matrices. Participants are encouraged to refer to the relevant exercise in "Quantum Computation and Quantum Information" by Nielsen and Chuang. Correct solutions have been provided by members kiwi and Opalg, with kiwi's solution being highlighted. The thread emphasizes the importance of understanding the mathematical concepts behind the computation. Engaging with this problem aids in grasping quantum mechanics and its applications in quantum information theory.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let
\begin{align*}
\sigma_1&=\begin{bmatrix}0&1\\1&0\end{bmatrix} \\
\sigma_2&=\begin{bmatrix}0&-i\\i&0\end{bmatrix} \\
\sigma_3&=\begin{bmatrix}1&0\\0&-1\end{bmatrix}
\end{align*}
be the three Pauli spin matrices. Let $\vec{v}$ be a real, three-dimensional unit vector, and let $\theta$ be a real number. Compute $\exp(i\theta \, \vec{v}\cdot\vec{\sigma}),$ where
$$\vec{v}\cdot\vec{\sigma}=\sum_{j=1}^3 v_j \, \sigma_j.$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 198 - January 12, 2016

This is Exercise 2.35 on page 75 of Quantum Computation and Quantum Information, by Nielsen and Chuang.

Congratulations to kiwi and Opalg for their correct answers. kiwi's solution follows:

Let \(\vec{v}=(a,b,c)\) where \(a^2+b^2+c^2=1\) because v is a unit vector.

It is straightforward to verify:
1. \(\sigma_1^2=\sigma_2^2=\sigma_3^2=I\)
2. \(\sigma_1\sigma_2=\sigma_2\sigma_3=\sigma_3\sigma_1=\sigma_2\sigma_1=\sigma_2\sigma_3=\sigma_3\sigma_1=0.I\)

Now \((\vec{v}\cdot\vec{\sigma})^2=(a\sigma_1+b\sigma_2+c\sigma_3)^2\)
\(\therefore(\vec{v}\cdot\vec{\sigma})^2=a^2\sigma_1^2+b^2\sigma_2^2+c^2\sigma_3^2+ab\sigma_1\sigma_2+ba\sigma_2\sigma_1+bc\sigma_2\sigma_3+cb\sigma_3\sigma_2+ca\sigma_3\sigma_1+ac\sigma_1\sigma_3\)
using (1) and (2)
\(\therefore(\vec{v}\cdot\vec{\sigma})^2=(a^2+b^2+c^2)I=I\)
So
3. \((\vec{v}\cdot\vec{\sigma})^{2n}=I\) for any n

Finally using a Taylor expansion:

\(e^{i\theta(\vec{v}\cdot\vec{\sigma})}=\sum_{n=0}^{\inf} \frac{(i)^n[\theta(\vec{v}\cdot\vec{\sigma})]^n}{n!}\)

\(\therefore =\sum_{n=0}^{\inf} \frac{(i)^{2n}[\theta(\vec{v}\cdot\vec{\sigma})]^{2n}}{(2n)!}+\sum_{n=0}^{\inf} \frac{(i)^{2n+1}[\theta(\vec{v}\cdot\vec{\sigma})]^{2n+1}}{(2n+1)!}\)

Using (3) we get:

\(\therefore =\sum_{n=0}^{\inf} I\frac{(-1)^{n}[\theta]^{2n}}{(2n)!}+\sum_{n=0}^{\inf} \frac{i(-1)^{n}[\theta]^{2n+1}(\vec{v}\cdot\vec{\sigma})}{(2n+1)!}\)

\(\therefore =I\sum_{n=0}^{\inf} \frac{(-1)^{n}[\theta]^{2n}}{(2n)!}+i(\vec{v}\cdot\vec{\sigma})\sum_{n=0}^{\inf} \frac{(-1)^{n}[\theta]^{2n+1}}{(2n+1)!}\)

Now recognising the Taylor expansions of cos and sin gives:

\( e^{i\theta(\vec{v}\cdot\vec{\sigma})}=I\cos(\theta)+i(\vec{v}\cdot\vec{\sigma})\sin(\theta)\)
 

Similar threads