MHB Problem of the Week # 198 - January 12, 2016

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2016
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
Here is this week's POTW:

-----

Let
\begin{align*}
\sigma_1&=\begin{bmatrix}0&1\\1&0\end{bmatrix} \\
\sigma_2&=\begin{bmatrix}0&-i\\i&0\end{bmatrix} \\
\sigma_3&=\begin{bmatrix}1&0\\0&-1\end{bmatrix}
\end{align*}
be the three Pauli spin matrices. Let $\vec{v}$ be a real, three-dimensional unit vector, and let $\theta$ be a real number. Compute $\exp(i\theta \, \vec{v}\cdot\vec{\sigma}),$ where
$$\vec{v}\cdot\vec{\sigma}=\sum_{j=1}^3 v_j \, \sigma_j.$$

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 198 - January 12, 2016

This is Exercise 2.35 on page 75 of Quantum Computation and Quantum Information, by Nielsen and Chuang.

Congratulations to kiwi and Opalg for their correct answers. kiwi's solution follows:

Let \(\vec{v}=(a,b,c)\) where \(a^2+b^2+c^2=1\) because v is a unit vector.

It is straightforward to verify:
1. \(\sigma_1^2=\sigma_2^2=\sigma_3^2=I\)
2. \(\sigma_1\sigma_2=\sigma_2\sigma_3=\sigma_3\sigma_1=\sigma_2\sigma_1=\sigma_2\sigma_3=\sigma_3\sigma_1=0.I\)

Now \((\vec{v}\cdot\vec{\sigma})^2=(a\sigma_1+b\sigma_2+c\sigma_3)^2\)
\(\therefore(\vec{v}\cdot\vec{\sigma})^2=a^2\sigma_1^2+b^2\sigma_2^2+c^2\sigma_3^2+ab\sigma_1\sigma_2+ba\sigma_2\sigma_1+bc\sigma_2\sigma_3+cb\sigma_3\sigma_2+ca\sigma_3\sigma_1+ac\sigma_1\sigma_3\)
using (1) and (2)
\(\therefore(\vec{v}\cdot\vec{\sigma})^2=(a^2+b^2+c^2)I=I\)
So
3. \((\vec{v}\cdot\vec{\sigma})^{2n}=I\) for any n

Finally using a Taylor expansion:

\(e^{i\theta(\vec{v}\cdot\vec{\sigma})}=\sum_{n=0}^{\inf} \frac{(i)^n[\theta(\vec{v}\cdot\vec{\sigma})]^n}{n!}\)

\(\therefore =\sum_{n=0}^{\inf} \frac{(i)^{2n}[\theta(\vec{v}\cdot\vec{\sigma})]^{2n}}{(2n)!}+\sum_{n=0}^{\inf} \frac{(i)^{2n+1}[\theta(\vec{v}\cdot\vec{\sigma})]^{2n+1}}{(2n+1)!}\)

Using (3) we get:

\(\therefore =\sum_{n=0}^{\inf} I\frac{(-1)^{n}[\theta]^{2n}}{(2n)!}+\sum_{n=0}^{\inf} \frac{i(-1)^{n}[\theta]^{2n+1}(\vec{v}\cdot\vec{\sigma})}{(2n+1)!}\)

\(\therefore =I\sum_{n=0}^{\inf} \frac{(-1)^{n}[\theta]^{2n}}{(2n)!}+i(\vec{v}\cdot\vec{\sigma})\sum_{n=0}^{\inf} \frac{(-1)^{n}[\theta]^{2n+1}}{(2n+1)!}\)

Now recognising the Taylor expansions of cos and sin gives:

\( e^{i\theta(\vec{v}\cdot\vec{\sigma})}=I\cos(\theta)+i(\vec{v}\cdot\vec{\sigma})\sin(\theta)\)
 

Similar threads

Back
Top