Problem of the Week #48 - February 25th, 2013

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on evaluating the volume integral of a tetrahedron defined by vertices $\mathbf{a}$, $\mathbf{b}$, $\mathbf{c}$, and $\mathbf{d}$ using a parameterization function $\mathbf{g}(s,t,u)$. The integral is expressed as $\iiint\limits_T f(x,y,z)\,dV= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u))tu^2 \left|\det\left(\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right)\right|\,ds\,dt\,du$. The problem was primarily addressed by user jakncoke, who correctly derived the formula but miscalculated the integral $\iiint\limits_T (x+y+z)\,dV$. A hybrid solution incorporating both user contributions was presented to clarify the computation.

PREREQUISITES
  • Understanding of tetrahedral geometry and volume integrals
  • Familiarity with parameterization of 3D shapes
  • Knowledge of determinants in linear algebra
  • Experience with multiple integrals in calculus
NEXT STEPS
  • Study the derivation of volume integrals for polyhedra using parameterization
  • Learn about the application of determinants in calculating volumes
  • Explore advanced techniques in multiple integrals, specifically in 3D
  • Practice evaluating integrals over complex geometric shapes
USEFUL FOR

Mathematicians, physics students, and anyone involved in computational geometry or calculus who seeks to deepen their understanding of volume integrals and parameterization techniques.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: A tetrahedron $T$ with vertices $\mathbf{a}$, $\mathbf{b}$, $\mathbf{c}$ and $\mathbf{d}$ can be parameterized by $\mathbf{x}=\mathbf{g}(s,t,u)$, where
\[\mathbf{g}(s,t,u)=\mathbf{d}+u(\mathbf{c}-\mathbf{d})+tu(\mathbf{a}-\mathbf{c})+stu(\mathbf{b}-\mathbf{a})\]
and $0\leq s\leq 1$, $0\leq t\leq 1$ and $0\leq u\leq 1$. Use this to show that
\[\iiint\limits_T f(x,y,z)\,dV= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u))tu^2 \left|\det\left(\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right)\right|\,ds\,dt\,du.\]

Then use this formula to evaluate $\displaystyle\iiint\limits_T (x+y+z)\,dV$, where $T$ is the tetrahedron with vertices $(0,0,0)$, $(1,1,0)$, $(-1,2,1)$, and $(-1,-1,4)$.

-----

 
Physics news on Phys.org
This week's problem was mostly answered correctly by jakncoke (you got the derivation correct, but the the computation of $\iiint x+y+z \,dV$ incorrect.)

Here's a hybrid of our two solutions (with some minor changes to jakncoke's answer).

We do the justification part first. If $\mathbb{g}(s,t,u)=\mathbf{d}+u(\mathbf{c}-\mathbf{d})+tu(\mathbf{a}-\mathbf{c})+stu(\mathbf{b}-\mathbf{a})$ with $0\leq s,t,u\leq 1$, then we have that\[\begin{aligned}\mathbf{g}_s(s,t,u) &= tu(\mathbf{b}-\mathbf{a})\\ \mathbf{g}_t(s,t,u) &= u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{g}_u(s,t,u) &= \mathbf{c}-\mathbf{d}+t(\mathbf{a}-\mathbf{c}) + st(\mathbf{b}-\mathbf{a}).\end{aligned}\]
We now see that our Jacobian matrix is
\[\begin{bmatrix}tu(\mathbf{b}-\mathbf{a}) \\ u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{c}-\mathbf{d} + t(\mathbf{a}-\mathbf{c})+st(\mathbf{b}-\mathbf{a})\end{bmatrix}=\begin{bmatrix}tu & 0 & 0\\ su & u & 0\\ st & t & 1\end{bmatrix}\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\]
and thus
\[\begin{aligned} \left|\det\begin{bmatrix}tu(\mathbf{b}-\mathbf{a}) \\ u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{c}-\mathbf{d} + t(\mathbf{a}-\mathbf{c})+st (\mathbf{b}-\mathbf{a})\end{bmatrix}\right| &= \left|\det\left( \begin{bmatrix}tu & 0 & 0\\ su & u & 0\\ st & t & 1\end{bmatrix} \begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right)\right|\\ &= \left|\det\begin{bmatrix} tu & 0 & 0\\ su & u & 0\\ st & t & 1\end{bmatrix}\right| \cdot \left|\det\begin{bmatrix} \mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d} \end{bmatrix}\right|\\ &= tu^2\left|\det\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right| \end{aligned} \]

Therefore, by change of variables, we have that
\[\begin{aligned} \iiint\limits_T f(x,y,z)\,dV &= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u)) \left|\det\begin{bmatrix}tu(\mathbf{b}-\mathbf{a}) \\ u(\mathbf{a}-\mathbf{c}) + su(\mathbf{b}-\mathbf{a})\\ \mathbf{c}-\mathbf{d} + t(\mathbf{a}-\mathbf{c})+st (\mathbf{b}-\mathbf{a})\end{bmatrix}\right|\,ds\,dt\,du\\ &= \int_0^1\int_0^1\int_0^1 f(\mathbf{g}(s,t,u)) tu^2\left|\det\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right| \,ds\,dt\,du. \end{aligned}\]
which is what was to be shown.

For the second part of the problem, let us define the corners of the tetrahedron $T$ as follows:
\[\begin{aligned}\mathbf{a} &= (0,0,0)\\ \mathbf{b} &= (1,1,0) \\ \mathbf{c} &= (-1,2,1)\\ \mathbf{d} &= (-1,-1,4).\end{aligned}\]

It now follows that
\[\begin{aligned} \mathbf{b}-\mathbf{a} &= (1,1,0)\\ \mathbf{a}-\mathbf{c} &= (1,-2,-1)\\ \mathbf{c}-\mathbf{d} &= (0,3,-3) \end{aligned}\]
and thus we have that
\[\begin{aligned}\mathbf{g}(s,t,u) &= (-1,-1,4) + u(0,3,-3) +tu(1,-2,-1)+ stu(1,1,0)\\ &= (-1+tu+stu, -1+3u-2tu+stu, 4-3u-tu). \end{aligned}\]
and
\[\left|\det\begin{bmatrix}\mathbf{b}-\mathbf{a}\\ \mathbf{a}-\mathbf{c}\\ \mathbf{c}-\mathbf{d}\end{bmatrix}\right| =\left|\det\begin{bmatrix} 1 & 1 & 0\\ 1 & -2 & -1 \\ 0 & 3 & -3\end{bmatrix}\right| = \left|\det\begin{bmatrix} -2 & -1\\ 3 & -3\end{bmatrix} - \det\begin{bmatrix}1 & 0\\ 0 & -3\end{bmatrix}\right|=|9+3| = 12\]

Furthermore, if $f(x,y,z)=x+y+z$, we have that
\[\begin{aligned}f(\mathbf{g}(s,t,u)) &= -1+tu+stu+(-1+3u-2tu+stu)+(4-3u-tu)\\ &= 2-2tu+2stu\\ &= 2(1-tu+stu). \end{aligned}\]

We now plug all of this into our formula to see that

\[\begin{aligned} \iiint\limits_T x+y+z\,dV &= \int_0^1 \int_0^1 \int_0^1 2(1-tu+stu)tu^2(12)\,ds\,dt\,du\\ &= 24\int_0^1 \int_0^1 \int_0^1 tu^2-t^2u^3+st^2u^3\,ds\,dt\,du\\ &= 24\int_0^1 \int_0^1 \left[s(tu^2-t^2u^3)+\frac{1}{2}s^2t^2u^3 \right]_0^1\,dt\,du\\ &= 24\int_0^1\int_0^1 tu^2-\frac{1}{2}t^2u^3\,dt\,du\\ &= 24 \int_0^1\left[ \frac{1}{2}t^2u^2-\frac{1}{6}t^3u^3\right]_0^1\,du\\ &= 24\int_0^1 \frac{u^2}{2}-\frac{u^3}{6}\,du\\ &= 24\left[\frac{u^3}{6} - \frac{u^4}{24}\right]_0^1\\ &= 24\left[\frac{1}{6}-\frac{1}{24}\right]\\ &= 24\cdot\frac{3}{24}\\ &= 3\end{aligned}\]

This now completes the solution to the problem. $\hspace{4in}\clubsuit$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
26
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
4K