Problem on thermal radiation and lenses

Click For Summary
SUMMARY

The discussion centers on calculating the diameter of an image formed by a convex lens when observing the Sun, which is considered to be at an effectively infinite distance, resulting in parallel light rays. The key concept is the "angular diameter," which refers to the angle subtended by an object at the observer's eye. The lens diameter of 100mm is crucial for determining the size of the image, as it influences the amount of light captured and the resulting image's characteristics. Understanding these principles is essential for solving the problem presented.

PREREQUISITES
  • Understanding of convex lens optics
  • Familiarity with the concept of angular diameter
  • Knowledge of basic geometric optics equations
  • Experience with light ray behavior and image formation
NEXT STEPS
  • Research "Convex lens image formation" for detailed insights on image characteristics
  • Study "Angular diameter calculation" to understand its application in optics
  • Explore "Ray optics and light propagation" to grasp the behavior of light rays through lenses
  • Learn about "Lens diameter effects on image quality" to see how lens specifications impact imaging
USEFUL FOR

Students studying optics, physics educators, and anyone interested in the principles of lens behavior and image formation.

phantomvommand
Messages
287
Reaction score
39
Homework Statement
Please see the attached photo
Relevant Equations
P (rad) = sigma e0 T^4
At long distances, images due to convex lenses are formed at the foci.
Screenshot 2021-03-13 at 2.32.22 PM.png

I know that the Sun is at a very far distance from the lens, so I assume the rays are parallel and the image is formed at the focus (500mm away from the centre of the lens).
How do I calculate the diameter of the image?
The hint to solving this problem says that "The angular diameters of object and image are equal". What is the "angular diameter", and what does the hint mean? If the light rays intersect at a focal point, how can there even be a diameter? Furthermore, how is the fact that the lens diameter = 100mm useful?

I am quite confused by this question, any help is appreciated. Thank you!
 
Physics news on Phys.org
phantomvommand said:
Homework Statement:: Please see the attached photo
Relevant Equations:: P (rad) = sigma e0 T^4
At long distances, images due to convex lenses are formed at the foci.

View attachment 279679
I know that the Sun is at a very far distance from the lens, so I assume the rays are parallel and the image is formed at the focus (500mm away from the centre of the lens).
How do I calculate the diameter of the image?
The hint to solving this problem says that "The angular diameters of object and image are equal". What is the "angular diameter", and what does the hint mean? If the light rays intersect at a focal point, how can there even be a diameter? Furthermore, how is the fact that the lens diameter = 100mm useful?

I am quite confused by this question, any help is appreciated. Thank you!
A ray arriving from a point at one edge of the sun, as observed from Earth, is not quite parallel with a ray from the opposite edge, so they will not focus at the same point.
OTOH, rays from one point on the sun arriving at different points of the lens are effectively parallel, so do focus at the same point.
As a result, an actual image of the sun is produced, spots and all.
 
haruspex said:
A ray arriving from a point at one edge of the sun, as observed from Earth, is not quite parallel with a ray from the opposite edge, so they will not focus at the same point.
OTOH, rays from one point on the sun arriving at different points of the lens are effectively parallel, so do focus at the same point.
As a result, an actual image of the sun is produced, spots and all.
Thanks for the reply. Could you please explain what angular diameter is about?
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K