Mike_bb
- 184
- 19
Hello!
I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem.
Given:
##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0##
##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1##
##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0##
I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to calculate projections on ##x'##,##y'##,##z'## directions:
##
\begin{bmatrix}
x' \\
y' \\
z' \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & cos(45) & -sin(45) \\
0 & sin(45) & cos(45) \\
\end{bmatrix}
\begin{bmatrix}
0 \\
1 \\
0 \\
\end{bmatrix}
##
##
\begin{bmatrix}
x' \\
y' \\
z' \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
\sqrt(2)/2 \\
\sqrt(2)/2 \\
\end{bmatrix}
##
On the other hand I tried to follow another way:
I rotated ##yz##-plane of this coordinate system and contour ##\Delta L## by an angle 45 degrees about ##x##-axis and applied equality for projections of curl on ##x'##,##y'##,##z'## directions:
##x'=rot_{x'}A=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0##
##y'=rot_{y'}A=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=\sqrt(2)/2##
##z'=rot_{z'}A=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0##
Wrong result is obtained at this step because we should obtain also ##z'=\sqrt(2)/2##.
Could anyone explain where did I go wrong?
Thanks!
I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem.
Given:
##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0##
##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1##
##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0##
I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to calculate projections on ##x'##,##y'##,##z'## directions:
##
\begin{bmatrix}
x' \\
y' \\
z' \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & cos(45) & -sin(45) \\
0 & sin(45) & cos(45) \\
\end{bmatrix}
\begin{bmatrix}
0 \\
1 \\
0 \\
\end{bmatrix}
##
##
\begin{bmatrix}
x' \\
y' \\
z' \\
\end{bmatrix}
=
\begin{bmatrix}
0 \\
\sqrt(2)/2 \\
\sqrt(2)/2 \\
\end{bmatrix}
##
On the other hand I tried to follow another way:
I rotated ##yz##-plane of this coordinate system and contour ##\Delta L## by an angle 45 degrees about ##x##-axis and applied equality for projections of curl on ##x'##,##y'##,##z'## directions:
##x'=rot_{x'}A=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0##
##y'=rot_{y'}A=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=\sqrt(2)/2##
##z'=rot_{z'}A=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0##
Wrong result is obtained at this step because we should obtain also ##z'=\sqrt(2)/2##.
Could anyone explain where did I go wrong?
Thanks!