I Problems in classical electrodynamics: Only for point-like particles?

AI Thread Summary
The discussion highlights unresolved issues in classical electrodynamics, particularly concerning the Abraham–Lorentz force and its relation to point-like particles. It suggests that these difficulties primarily arise from the assumption of exact point charges, while continuous charge densities may not exhibit the same problems. Participants agree that the notion of point-like particles leans towards quantum mechanics, questioning the validity of classical electrodynamics in this context. The consensus points to the non-existence of classical point particles as a significant factor in these inconsistencies. Overall, the conversation emphasizes the limitations of classical theories when applied to fundamental particle behavior.
greypilgrim
Messages
579
Reaction score
44
Hi.

I was surprised when I first read that there's quite a couple of unsolved problems in classical electrodynamics, such as the Abraham–Lorentz force. I have a couple of questions about that:
  1. Do those difficulties only appear for exact point-like particles? Do they all vanish with continuous charge densities (even if they might be localized around a very small, yet finite, region in space)?
  2. If yes: Isn't the assumption of point-like particles or also quantized charge already quantum, so why would we even expect classical electrodynamics to hold?
 
Physics news on Phys.org
greypilgrim said:
Do those difficulties only appear for exact point-like particles? Do they all vanish with continuous charge densities (even if they might be localized around a very small, yet finite, region in space)?
As far as I know, yes. All of the mathematical inconsistencies stem from classical point charges.

greypilgrim said:
Isn't the assumption of point-like particles or also quantized charge already quantum, so why would we even expect classical electrodynamics to hold?
I agree. To me these issues speak more to the non-existence of classical point particles than anything else.
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top