Product of roots abcd in 4th degree equation

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Degree Product Roots
Click For Summary
SUMMARY

The distinct real numbers \(a, b, c, d\) defined by the equations \(a=\sqrt{4+\sqrt{5+a}}, b=\sqrt{4-\sqrt{5+b}}, c=\sqrt{4+\sqrt{5-c}}, d=\sqrt{4-\sqrt{5-d}}\) yield a product of \(abcd = 11\). The roots of the polynomial \(x^4 - 8x^2 + x + 11 = 0\) are critical in establishing this result. The analysis shows that the roots consist of two positive and two negative values, confirming that the absolute values of these roots correspond to \(a, b, c, d\). Thus, the product of these absolute values is definitively \(11\).

PREREQUISITES
  • Understanding of polynomial equations, specifically quartic equations.
  • Familiarity with the properties of square roots and their manipulation.
  • Knowledge of the relationship between roots and coefficients in polynomial equations.
  • Basic algebraic skills to perform squaring and rearranging of equations.
NEXT STEPS
  • Study the properties of quartic equations, focusing on root behavior and symmetry.
  • Learn about the techniques for solving polynomial equations, including factoring and synthetic division.
  • Explore the implications of the Fundamental Theorem of Algebra on real and complex roots.
  • Investigate the application of Descartes' Rule of Signs to determine the number of positive and negative roots.
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving polynomial equations and understanding their roots will benefit from this discussion.

juantheron
Messages
243
Reaction score
1
If $a,b,c,d$ are distinct real no. such that

$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$
 
Mathematics news on Phys.org
jacks said:
If $a,b,c,d$ are distinct real no. such that

$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$

Hello.

a^4-8a^2-a+11=0

b^4-8b^2-b+11=0

c^4-8c^2+c+11=0

d^4-8d^2+d+11=0

Common roots "a" and "b":

r_1=-2.3710

r_2=-1.4551

r_3=1.2266

r_4=2.5994

Common roots "c" and "d":

s_1=2.3710

s_2=1.4551

s_3=-1.2266

s_4=-2.5994

There are several solutions product of roots.

A curiosity, jacks. Do you participate in a forum on Spanish?

Regards.
 
jacks said:
If $a,b,c,d$ are distinct real no. such that

$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$
In order to get a unique solution, I believe the question should say
If $a,b,c,d$ are distinct positive real nos. such that
$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$ ?​
[sp]Then $a,b,c,d$ all satisfy the equation $x = \sqrt{4 \pm\sqrt{5\pm x}}$. Square both sides to get $x^2 - 4 = \pm\sqrt{5\pm x}$. Square both sides again, getting $(x^2-4)^2 = 5 \pm x$, or $x^4 - 8x^2 \pm x + 11 = 0$.

Now it is clear that $x$ is a solution of $x^4 - 8x^2 + x + 11 = 0$ if and only if $-x$ is a solution of $x^4 - 8x^2 - x + 11 = 0$. Also, the sum of the roots of $x^4 - 8x^2 + x + 11$ is $0$, and their product is $11$. Therefore, given that the roots are real, two of them must be positive and two negative. It follows that the numbers $a,b,c,d$ must be the absolute values of the roots of $x^4 - 8x^2 + x + 11$, and therefore their product is $11$.[/sp]
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K