MHB Product of roots abcd in 4th degree equation

juantheron
Messages
243
Reaction score
1
If $a,b,c,d$ are distinct real no. such that

$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$
 
Mathematics news on Phys.org
jacks said:
If $a,b,c,d$ are distinct real no. such that

$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$

Hello.

a^4-8a^2-a+11=0

b^4-8b^2-b+11=0

c^4-8c^2+c+11=0

d^4-8d^2+d+11=0

Common roots "a" and "b":

r_1=-2.3710

r_2=-1.4551

r_3=1.2266

r_4=2.5994

Common roots "c" and "d":

s_1=2.3710

s_2=1.4551

s_3=-1.2266

s_4=-2.5994

There are several solutions product of roots.

A curiosity, jacks. Do you participate in a forum on Spanish?

Regards.
 
jacks said:
If $a,b,c,d$ are distinct real no. such that

$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$
In order to get a unique solution, I believe the question should say
If $a,b,c,d$ are distinct positive real nos. such that
$a=\sqrt{4+\sqrt{5+a}}\;,b=\sqrt{4-\sqrt{5+b}}\;,c=\sqrt{4+\sqrt{5-c}}\;,d=\sqrt{4-\sqrt{5-d}}$. Then $abcd=$ ?​
[sp]Then $a,b,c,d$ all satisfy the equation $x = \sqrt{4 \pm\sqrt{5\pm x}}$. Square both sides to get $x^2 - 4 = \pm\sqrt{5\pm x}$. Square both sides again, getting $(x^2-4)^2 = 5 \pm x$, or $x^4 - 8x^2 \pm x + 11 = 0$.

Now it is clear that $x$ is a solution of $x^4 - 8x^2 + x + 11 = 0$ if and only if $-x$ is a solution of $x^4 - 8x^2 - x + 11 = 0$. Also, the sum of the roots of $x^4 - 8x^2 + x + 11$ is $0$, and their product is $11$. Therefore, given that the roots are real, two of them must be positive and two negative. It follows that the numbers $a,b,c,d$ must be the absolute values of the roots of $x^4 - 8x^2 + x + 11$, and therefore their product is $11$.[/sp]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
41
Views
5K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
1
Views
985
Back
Top