Production of the magnetic field from 3-phase currents

AI Thread Summary
The discussion focuses on calculating the magnetic field intensity from three-phase currents separated by 120 degrees, represented by specific sinusoidal equations. The user attempts to derive the magnetic field intensity equation using Ampere's Law but encounters confusion regarding the application of line integrals. It is clarified that the integral in Ampere's Law is a line integral around a closed curve, not a simple integral. Additionally, to determine the magnetic field at the center of the coils, more geometric information about the coils is necessary. The conversation emphasizes the importance of understanding vector fields and the correct application of mathematical principles in electromagnetic theory.
PhysicsTest
Messages
246
Reaction score
26
TL;DR Summary
Magnetic field equation based on the 3 phase currents.
This is not a homework problem, I want to calculate the equation of the magnetic field intensity from the 3 phase currents separated by 120Degrees. The 3 currents are
##I_{{aa}^{'}} = I_M\sin \omega t ; -> eq1 \
I_{{bb}^{'}} = I_M\sin(\omega t - 120); -> eq2\
I_{{cc}^{'}} = I_M\sin(\omega t -240); -> eq3
##
The current in coil ##{{aa}^{'}}## flows into the ##a## end of the coil and out the ##{{a}^{'}}## end of the coil. It produces the magnetic field intensity ##H_{{aa}^{'}}(t) = H_M\sin(\omega t) \angle 0## -> eq4;
I wanted to derive eq1. The equation from the book about the magnetic field intensity
##\oint H.dl = I_{net} -> eq5; ##
My attempt is
##H = \frac{dI_{{aa}^{'}}} {dl} ->eq6 ## substitute eq1 into eq6.
##H = \frac{dI_M\sin \omega t} {dl} -> eq7 ##
But i don't see the equation 6 in terms of ##l##, how to solve this and derive equation 4?
 
Engineering news on Phys.org
You have misinterpret Ampere's Law (eq5), the integral that appears there is not a "simple" integral but a line or path integral around a closed curve. So (eq6) simply doesn't hold (it would hold if that integral was a simple integral as i said).
Check here for more info about line integrals.
https://en.wikipedia.org/wiki/Line_integral
More specifically check the section about "Line integral of a Vector field" because H in eq5 is a vector field.

Anyway if you want to find H at the center of the three coils, then you have to make some extra assumptions about the geometry of the coils (for example are they solenoids?), the information from the currents only is not enough.
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top