Projectile, finding landing distance - given landing angle

  • Thread starter Thread starter Laura1321412
  • Start date Start date
  • Tags Tags
    Angle Projectile
Click For Summary
A skier launches off a ramp at 10.7 m/s and 15.8° above the horizontal, landing on a slope inclined at 51.3°. The calculations involve determining the projectile's trajectory using kinematic equations, focusing on the x and y coordinates. The key equations for the projectile's motion are y(t) = vi sin(α) t - g/2 t^2 and x(t) = vi cos(α) t. By equating the projectile's path to the slope's equation, the landing distance is calculated to be approximately 32.9 m, leading to a total distance of 52.5 m down the jump. The final distance should be reported as positive, despite the slope's negative angle.
Laura1321412
Messages
23
Reaction score
0

Homework Statement



A skier leaves the ramp of a ski jump with a velocity of 10.7 m/s, 15.8° above the horizontal. The slope is inclined at 51.3°, and air resistance is negligible. Calculate the distance from the ramp to where the jumper lands.



Homework Equations



Kinematics ones


The Attempt at a Solution



I assumed an x-axis along the height of the ramp, and developed equations for the curve of the skier and the line of the slope of the hill..

first, distance to from slope to highest point of jump

vi(y) = sin15.8 *10.7 = 2.9134 /9.8 = t = .29728 , 2.9134 +0 /2 * t = .4331 m

So the y distance of the jumper should equal the distance he has fallen at time (t) +.4331


x = (t+.2972)*cos15.8 *10.7
y= -4.9t^2 +.4331

these are only valid for t> 2.9134 but that shouldn't matter?

sooo tan 51.3 *1 = 1.248 is the slope of the line the x and y distance need to intersect... sloping downard from the angle of the jump so it will be negative

okay , solving for t(x) -->10.296t + 3.06=x , (x-3.06)/10.296= t

plug this into the y distance equation

-4.9 [ (x-3.06)/10.296 ]^2 +.4331

-4.9 [( x^2 -6.12x +9.364)/ 106] +.4331
(-4.9x^2 + 29.99x - 45.88)/106 +.4331
-.0462x^2 + .283x -.00027 = y

now the line it needs to intersect, slope found above, since it originates from the jump which determined as the axis, the equation should by y= -1.238x

equate these equations
-.0462x^2 + .283x -.00027 = -1.238x
-.0462x^2 + 1.52x -.00027 = 0

x= 32.9 m

with this distance the time would be 3.2 s, making the y distance .5*9.8(3.2-.297)^2 = 41.3 -.433 (measured from jump height not from heighest point of projection ) 40.9 m ... the slope of these two distances i pretty close to the desired one (i have rounded messily and a bunch, will redo + fix ...)

so, the total distance down the jump would be sqrt ( x^2 +y ^2 )

= 52.5 m


Im unsure of this answer, i just wanted to know if anyone can see a mistake i made? I really am completley lost as to if i went about solving this correctly. Also, since the slope of the this line is negative, do i report it as a negative distance?

Thank you ! :)
 
Physics news on Phys.org
Laura, your work is correct, although you might made some rounding errors, but you overcomplicated the problem. I understood that you put the origin of the coordinate system at the top of the slope, and the x-axis is horizontal, the y-axis points vertically upward.

The y and x coordinates of the projectile change according to the functions

y(t)=vi sin(α) t-g/2 t^2 , x=vi cos(α) t, where α=15.8°

during the whole flight. No need to calculate the time of rise and the time of fall.

You can eliminate the time and you get the y(x) graph of the projectile.

y=x tan(α)-g/2 x^2/(vi cos(α))^2

The equation for the slope is y=-tan(51.3°)x

Equate the two equations for y and solve for x. You get two roots: one is zero, the initial common point of the slope and skier. The other gives the x coordinate of the landing point. D= X/cos(51.3°) gives the desired distance, which, naturally, has to be positive.ehild
 

Attachments

  • projectile.JPG
    projectile.JPG
    7.9 KB · Views: 874
Great! Thanks for your tips! that will certianly help from running out time on exams haha
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
Replies
8
Views
2K